CDS 110b: Sensor Fusion: Difference between revisions

From Murray Wiki
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 6: Line 6:
<li> Sensor fusion using Kalman filters
<li> Sensor fusion using Kalman filters
<li> The extended Kalman filter
<li> The extended Kalman filter
* Ducted fan example: {{cds110b-pdf|dfan_kf.m|dfan_kf.m}}, {{cds110b-pdf|pvtol.m|pvtol.m}}
* Ducted fan example: {{cds110b-pdfs|dfan_kf.m|dfan_kf.m}}, {{cds110b-pdfs|pvtol.m|pvtol.m}}
<li> Parameter estimation using EKF
<li> Parameter estimation using EKF
</ol>
</ol>

Revision as of 04:31, 7 February 2006

WARNING: This page is for a previous year.
See current course homepage to find most recent page available.
Course Home L7-2: Sensitivity L8-1: Robust Stability L9-1: Robust Perf Schedule

In this lecture we show how the Kalman filter can be used for sensor fusion and explore some variations on the basic Kalman filter, including the extended Kalman filter.

Lecture Outline

  1. Sensor fusion using Kalman filters
  2. The extended Kalman filter
  3. Parameter estimation using EKF

Lecture Materials

References and Further Reading

Frequently Asked Questions