CDS 110b: Sensor Fusion: Difference between revisions
From Murray Wiki
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
<li> Sensor fusion using Kalman filters | <li> Sensor fusion using Kalman filters | ||
<li> The extended Kalman filter | <li> The extended Kalman filter | ||
* Ducted fan example: {{cds110b- | * Ducted fan example: {{cds110b-pdfs|dfan_kf.m|dfan_kf.m}}, {{cds110b-pdfs|pvtol.m|pvtol.m}} | ||
<li> Parameter estimation using EKF | <li> Parameter estimation using EKF | ||
</ol> | </ol> |
Revision as of 04:31, 7 February 2006
See current course homepage to find most recent page available. |
Course Home | L7-2: Sensitivity | L8-1: Robust Stability | L9-1: Robust Perf | Schedule |
In this lecture we show how the Kalman filter can be used for sensor fusion and explore some variations on the basic Kalman filter, including the extended Kalman filter.
Lecture Outline
- Sensor fusion using Kalman filters
- The extended Kalman filter
- Parameter estimation using EKF
Lecture Materials
- Lecture presentation (MP3)
- Lecture Notes on Kalman Filters
- Reading: Friedland, Chapter 11