CDS 110b: Optimal Control
See current course homepage to find most recent page available. |
Course Home | L7-2: Sensitivity | L8-1: Robust Stability | L9-1: Robust Perf | Schedule |
This lecture provides an overview of optimal control theory. Beginning with a review of optimization, we introduce the notion of Lagrange multipliers and provide a summary of the Pontryagin's maximum principle.
Lecture Outline
- Introduction: two degree of freedom design and trajectory generation
- Review of optimization: necessary conditions for extrema, with and without constraints
- Optimal control: Pontryagin Maximum Principle
- Examples: bang-bang control and Caltech ducted fan (if time)
Lecture Materials
References and Further Reading
- Template:Cds110b-pdf - This excerpt is from Lewis and Syrmos, 1995 and gives a derivation of the necessary conditions for optimaliity. Other parts of the book can be searched via Google Books and purchased online.
- Notes on Pontryagin's Maximum Principle (courtesy of Doug MacMynowski) - this comes from a book on dynamic programming (DP) and uses a slightly different notation than we used in class.
Frequently Asked Questions
Q: What do you mean by penalizing something, from Q>=0 "penalizes" state error?
According to the form of the quadratic cost function , there are three quadratic terms such as , , and . When and if is relative big, the value of will have bigger contribution to the value of . In order to keep small, must be relatively small. So selecting a big can keep in small value regions. This is what the "penalizing" means.
So in the optimal control design, the relative values of , , and represent how important , , and are in the designer's concerns.
Zhipu Jin,13 Jan 03