CDS 110b: Receding Horizon Control: Difference between revisions

From Murray Wiki
Jump to navigationJump to search
Line 89: Line 89:
</blockquote>
</blockquote>


<span name=nomp3/>'''Q: How come there is no MP3 recording for today's lecture?'''
<span id=nomp3/>'''Q: How come there is no MP3 recording for today's lecture?'''
<blockquote> Technology glitch.  My MP3 recorder didn't start up correctly and so I don't have any audio record of the lecture.  I have found and fixed the problem, but if you didn't attend today's lecture you'll have to rely on the lecture slides, notes, and friends.</blockquote>
<blockquote> Technology glitch.  My MP3 recorder didn't start up correctly and so I don't have any audio record of the lecture.  I have found and fixed the problem, but if you didn't attend today's lecture you'll have to rely on the lecture slides, notes, and friends.</blockquote>

Revision as of 04:29, 19 January 2006

WARNING: This page is for a previous year.
See current course homepage to find most recent page available.
Course Home L7-2: Sensitivity L8-1: Robust Stability L9-1: Robust Perf Schedule

This lecture presents an overview of receding horizon control (RHC). In addition to providing a summary of the available theoretical results, we introduce the concept of differential flatness for simplifying RHC problems and provide an example of RHC control on the Caltech ducted fan. .

Lecture Outline

  1. Receding Horizon Control
    • Problem Formulation
    • Stability theorems
  2. Differential Flatness and Trajectory Generation
    • Definitions
    • Properties
    • Examples
  3. Examples: Caltech ducted fan, satellite formation flight, multi-vehicle testbed

Lecture Materials

References and Further Reading

Frequently Asked Questions

Q: How is differential flatness defined?

A system of the form

is said to be differentially flat if there exists an integer and a (smooth) function of the form

such that all solutions of the differential equation can be written in terms of and a finite number of its derivatives with respect to time. In other words, and satisfying the dynamics of the system have the form

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{matrix} x &=& a(z, \dot z, \ddot z, \dots, z^{(q)}) \\ u &=& b(z, \dot z, \ddot z, \dots, z^{(q)}) \end{matrix} }

for some integer Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q} and smooth functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} . The variable Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} is often called the flat output and if a system is differentially flat then the number of flat outputs is equal to the number of inputs to the system.

Checking a system for flatness is difficult, but there are certain classes of systems for which there are necessary and sufficient conditions. Usually you find the flat outputs by a combination of physical insight and trial and error.

References:

Q: How do you do trajectory optimization using differential flatness

The basic idea in using flatness for optimal trajectory generation is to rewrite the cost function and constraints in terms of the flat outputs and then parameterize the flat outputs in terms of a set of basis functions:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z(t) = \sum_i \alpha_i \psi_i(t) }

Here, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_i} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i = 1, \dots, N} are the basis functions (eg, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_i(t) = t^i} ) and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_i} are constant coefficients.

Once you have parameterized the flat outputs by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} , you can convert all expressions involving Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} into functions involving Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} . This process is described in a more detail in the lectures notes (Section 4).

Q: Is the condition given by Jadbabaei and Hauser and example of a CLF or the definition of a CLF?

I was a bit sloppy defining CLFs in lecture. The formal definition is given in the lectures notes (Section 2.2, Defn 1). Briefly, given a system

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot x = f(x,u), }

we say that a (smooth) function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x)} is a control Lyapunov function (CLF) if

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x) > 0} for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \neq 0}
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x) = 0} if and only if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 0}
  • The derivative of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} along trajectories of the system satisfies
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \min_u \dot V(x) |_{\dot x = f(x,u)} = \min_u \frac{\partial V}{\partial x} f(x, u) < 0 }
for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}

The condition for stability given in lecture is that there exists a CLF for the system that in addition satisfies the relationship

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \min_u (\dot V(x) + L(x, u)) < 0 }

along the trajectories of the system. Thus we have to have the derivative of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} be sufficiently negative definite in order to insure that the terminal cost Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x)} provides stability.

Q: Why do receeding horizon trajectories need to go to zero (on slide 4)?

It is common in control problems to assume that the desired trajectory goes to zero as its desired end state. This is implicitly the case whenever you see an integral cost of the form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^T Q x} or a terminal cost Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^T(T) P_1 x(T)} , both of which are minimized when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} is zero. There are two ways to think about this:

  • If we wish to move to a different (equilibrium) point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_d} , we can always change the state to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{new} = x - x_d} and then the new state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{new}} has zero as the desired equilibrium point.
  • If we want to track a trajectory Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_d(t)} (not constant), then we can solve the problem for the error system given by substrating the desired state.

This is explained in more dtail in the lecture notes on LQR control (Section 3).

Q: How come there is no MP3 recording for today's lecture?

Technology glitch. My MP3 recorder didn't start up correctly and so I don't have any audio record of the lecture. I have found and fixed the problem, but if you didn't attend today's lecture you'll have to rely on the lecture slides, notes, and friends.