CDS 110b: Optimal Control: Difference between revisions
From Murray Wiki
Jump to navigationJump to search
(added links to lecture and homework PDFs) |
(added link to lecture notes) |
||
Line 12: | Line 12: | ||
== Lecture Materials == | == Lecture Materials == | ||
* {{cds110b-pdfs|L1-2_Optimal.pdf|Lecture Presentation}} | * {{cds110b-pdfs|L1-2_Optimal.pdf|Lecture Presentation}} | ||
* {{cds110b-pdfs|optimal.pdf|Lecture notes on optimal control}} | |||
* {{cds110b-pdfs|hw1.pdf|Homework 1}} | * {{cds110b-pdfs|hw1.pdf|Homework 1}} | ||
Revision as of 20:34, 2 January 2006
See current course homepage to find most recent page available. |
Course Home | L7-2: Sensitivity | L8-1: Robust Stability | L9-1: Robust Perf | Schedule |
This lecture provides an overview of optimal control theory. Beginning with a review of optimization, we introduce the notion of Lagrange multipliers and provide a summary of the Pontryagin's maximum principle.
Lecture Outline
- Introduction: two degree of freedom design and trajectory generation
- Review of optimization: necessary conditions for extrema, with and without constraints
- Optimal control: Pontryagin Maximum Principle
- Examples: bang-bang control and Caltech ducted fan (if time)