Reduction Strategies for Kinetic Monte Carlo Models of Thin Film Growth

From Murray Wiki
Jump to navigationJump to search


Martha A. Gallivan, Richard M. Murray, David G. Goodwin
Electrochemical Society, May 2001

Thin film deposition encompasses a variety of physical processes, which occur over a wide range of length and time scales. A major challenge in modeling and simulating thin film deposition is this disparity in scales. In this study we focus on an atomic-scale lattice model of surface processes. Kinetic Monte Carlo simulations provide stochastic realizations of the surface evolution, which may then inform a reacting flow or heat transfer model. Unfortunately, these simulations are extremely computationally intensive, particularly for design and optimization studies in which many cases are considered.

We develop reduced-order models of thin film growth using two techniques: balanced truncation and eigensystem realization. After identifying the underlying structure of the lattice model as a linear differential equation, we apply the reduction techniques to obtain reduced-order models of root-mean-square roughness and step edge density. Three modes are needed for a very small model system, while only five modes capture the evolution of a 200x200-site system over a range of growth modes, from stochastic roughening to island nucleation and coalescence.

  • Conference

Paper: http://www.cds.caltech.edu/~murray/preprints/gmg01-ecs.pdf