A Framework for Low--Observable Tra jectory Generation in the Presence of Multiple Radars
Tamer Inanc, Mehmet K Muezzinoglu, Kathleen Misovec, Richard M Murray
AIAA Journal of Guidance, Control and Dynamics, 2008 (submitted)
This paper explores the problem of finding a real--time optimal tra jectory for unmanned air vehicles (UAV) in order to minimize their probability of detection by opponent multiple radar detection systems. The problem is handled using the Nonlinear Tra jectory Generation (NTG) method developed by Milam et al. The paper presents a formulation of the trajectory generation task as an optimal control problem, where temporal constraints allow periods of high observability interspersed with periods of low observability. This feature can be used strategically to aid in avoiding detection by an opponent radar. The guidance is provided in the form of sampled tabular data. It is then shown that the success of NTG on the proposed low--observable tra jectory generation problem depends upon an accurate parameterization of the guidance data. In particular, such an approximator is desired to have a compact architecture, a minimum number of design parameters, and a smooth continuously--differentiable input-output mapping. Artificial Neural Networks (ANNs) as universal approximators are known to possess these features, and thus are considered here as appropriate candidates for this task. Comparison of ANNs against B-spline approximators is provided, as well. Numerical simulations on multiple radar scenarios illustrate UAV trajectories optimized for both detectability and time.
- Preprint: http://www.cds.caltech.edu/~murray/preprints/immm08-jgcd s.pdf
- Project(s):