Search by property

From Murray Wiki
Jump to navigationJump to search

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Abstract" with value "This paper explores the problem of finding a real--time optimal tra jectory for unmanned air vehicles (UAV) in order to minimize their probability of detection by opponent multiple radar detection systems. The problem is handled using the Nonlinear Tra jectory Generation (NTG) method developed by Milam et al. The paper presents a formulation of the trajectory generation task as an optimal control problem, where temporal constraints allow periods of high observability interspersed with periods of low observability. This feature can be used strategically to aid in avoiding detection by an opponent radar. The guidance is provided in the form of sampled tabular data. It is then shown that the success of NTG on the proposed low--observable tra jectory generation problem depends upon an accurate parameterization of the guidance data. In particular, such an approximator is desired to have a compact architecture, a minimum number of design parameters, and a smooth continuously--differentiable input-output mapping. Artificial Neural Networks (ANNs) as universal approximators are known to possess these features, and thus are considered here as appropriate candidates for this task. Comparison of ANNs against B-spline approximators is provided, as well. Numerical simulations on multiple radar scenarios illustrate UAV trajectories optimized for both detectability and time.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • A Framework for Low--Observable Tra jectory Generation in the Presence of Multiple Radars  + (This paper explores the problem of findingThis paper explores the problem of finding a real--time optimal tra jectory for unmanned air vehicles (UAV) in order to minimize their probability of detection by opponent multiple radar detection systems. The problem is handled using the Nonlinear Tra jectory Generation (NTG) method developed by Milam et al. The paper presents a formulation of the trajectory generation task as an optimal control problem, where temporal constraints allow periods of high observability interspersed with periods of low observability. This feature can be used strategically to aid in avoiding detection by an opponent radar. The guidance is provided in the form of sampled tabular data. It is then shown that the success of NTG on the proposed low--observable tra jectory generation problem depends upon an accurate parameterization of the guidance data. In particular, such an approximator is desired to have a compact architecture, a minimum number of design parameters, and a smooth continuously--differentiable input-output mapping. Artificial Neural Networks (ANNs) as universal approximators are known to possess these features, and thus are considered here as appropriate candidates for this task. Comparison of ANNs against B-spline approximators is provided, as well. Numerical simulations on multiple radar scenarios illustrate UAV </br>trajectories optimized for both detectability and time.optimized for both detectability and time.)