Difference between revisions of "EECI-IGSC 2020"

From Murray Wiki
Jump to navigationJump to search
Line 37: Line 37:
| Welcome and course administration
| Welcome and course administration
|
|
{{eeci2020 entry|L1|RM|Mon, 10:00|Introduction|
{{eeci2020 entry|L1|RM|Mon, 10:00|Course Introduction|
* Introduction to self-driving cars
* Introduction to self-driving cars
* Specifications and rules of the road
* Specifications and rules of the road

Revision as of 17:32, 29 February 2020

Eecilogo.png

Specification, Design, and Verification for Self-Driving Cars

Cdslogo.png
Richard M. Murray and Nok Wongpiromsarn
9-13 March 2012, Istanbul (Turkey)

Course Description

Increases in fast and inexpensive computing and communications have enabled a new generation of information-rich control systems that rely on multi-threaded networked execution, distributed optimization, sensor fusion and protocol stacks in increasingly sophisticated ways. This course will provide working knowledge of a collection of methods and tools for specifying, designing and verifying control protocols for autonomous systems, including self-driving cars. We combine methods from computer science (temporal logic, model checking, reactive synthesis) with those from control theory (abstraction methods, optimal control, invariants sets) to analyze and design partially asynchronous control protocols for continuous systems. In addition to introducing the mathematical techniques required to formulate problems and prove properties, we also describe a software toolbox, TuLiP, that is designed for analyzing and synthesizing hybrid control systems using temporal logic and robust performance specifications.

Reading

The following papers and textbooks will be used heavily throughout the course:

Additional references for individual topics are included on the individual lecture pages.

Course information

Lecture Schedule

The schedule below lists the lectures that will be given as part of the course. Each lecture will last approximately 90 minutes. The individual lecture pages give an overview of the lecture and links to additional information.

Lec Date/time Title Topics
Mon, 9:30 Welcome and course administration
L1
RM
Mon, 10:00 Course Introduction
  • Introduction to self-driving cars
  • Specifications and rules of the road
  • Architecture for self-driving (including layers)
  • Design problem, analysis/safety
L2
RM
Mon, 12:45 Automata Theory
  • Finite transition systems
  • Kripke structures
  • Automata classes (finite, Buchi, ND, etc)
  • Examples: stoplight, intersection
L3
RM
Mon, 14:15 Temporal Logic
  • Temporal logic
  • Linear time properties
  • LTL, STL
  • Examples: lane change, intersection
L4
TW
Mon, 15:45 Model Checking
  • LTL to Buchi automata
  • Ideas behind how model checkers work
  • Use for “open loop” synthesis
  • Examples: intersection
L6
TW
Tue, 8:30 Probabilistic Systems
  • Stochastic models: Markov chains, Markov decision processes
  • Sigma algebra
  • Reachability, regular safety and omega-regular properties
  • PCTL
C1
TW
Tue, 10:30 Computer Session: Stormpy
  • Probabilistic model checking
  • Probabilistic synthesis
  • TuLiP interface to stormpy
L5
TW
Tue, 14:15 Discrete Abstractions
  • Finite-state approximation of hybrid systems
  • Use of model checking for the verificatino of hybrid systems
  • Construction of finite-state abstractions for synthesis
L7
RM
Wed, 8:30 Reactive Synthesis
  • Assume/guarantee formalsms
  • Two-player, asymmetric games
  • Winning set computations, solving for strategies
  • Reading: WTM
  • Examples: runner-blocker, grid-world (parking lot, intersection)
C2
RM
Thu, 10:30 Computer Session: TuLiP
  • Simulation setup
  • TuLiP synthesis
L8
TW
Thu, 8:30 Minimum Violation Planning
  • TBD
C3
TW
Thu, 10:30 Computer Session: MVP
  • TBD
L9
TW
Fri, 9:00 Rulebooks
  • TBD
L10
RM
Fri, 10:00 Safety-Critical Systems
  • Requirements for safety-critical control systems
  • Incorporating ML into autonomous sytems
  • Testing and evaluation
L11
RM
Fri, 11:00 Summary
  • Summary of key concepts from the course
  • Open issues for future research
  • Discussion

Software Installation

We will make use of two programs during the lab sessions:

  • stormpy
  • TuLiP - python-based toolbox for temporal logic planning and controller synthesis

During the course, we will access these programs on a remote machine using ssh. For some parts of the course it will be useful to have a local installation of MATLAB that can be used for visualizing some simulation results.

If you would like to install the software on your own, here are some basic directions for installing the two packages: