CDS 110b: Stochastic Systems
CDS 110b | ← Schedule → | Project | Course Text |
This set of lectures presents an overview of random processes and stochastic systems. We begin with a short review of continuous random variables and then consider random processes and linear stochastic systems. Basic concepts include probability density functions (pdfs), joint probability, covariance, correlation and stochastic response.
- Lecture notes: Stochastic Systems
- HW #5 (due Wed, 20 Feb)
References and Further Reading
- R. M. Murray, Optimization-Based Control. Preprint, 2008: Chapter 4 - Stochastic Systems
- Hoel, Port and Stone, Introduction to Probability Theory - this is a good reference for basic definitions of random variables
- Apostol II, Chapter 14 - another reference for basic definitions in probability and random variables
Frequently Asked Questions
Q (2008): Why does E{X Y} = 0 if two random variables are independent
By definition, we have that
<amsmath> E\{X Y\} = \int_{-\infty}^\infty \int_{-\infty}^\infty x y p(x, y)\, dx\, dy
</amsmath>where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(x,y)} is the joint probability density function. If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y} are independent then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(x, y) = p(x) p(y)} and we have
<amsmath> \begin{aligned} E\{X Y\} &= \int_{-\infty|}^\infty \int_{-\infty}^\infty x y p(x) p(y)\, dx\, dy \\ &= \int_{-\infty}^\infty \left( \int_{-\infty}^\infty x p(x)\, dx \right) y p(y)\, dy = \int_{-\infty}^\infty \mu_X y p(y) dy = \mu_X \mu_Y. \end{aligned}
</amsmath>If we assume that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_X = \mu_Y = 0} then the result follows. (Alternatively, compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E\{(X - \mu_X) (Y - \mu_Y)\}}
Q (2007): How do you determine the covariance and how does it relate to random processes
The covariance of two random variables Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} is given by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E\{(x - \mu) (y - \mu)\} = \int_{-\infty}^\infty \int_{-\infty}^\infty (x - \mu) (y - \mu) p(x, y) dx dy } For the case when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = y} , the covariance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(x, y)} is called the variance, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma^2} .
For a random process, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t)} , with zero mean, we define the covariance as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(t) = E\{x(t) x^T(t)\}. } If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} is a vector of length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} , then the covariance matrix is an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \times n} matrix with entries
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E\{x_i(t) x_j(t)\} = \int_{-\infty}^\infty \int_{-\infty}^\infty x_i x_j p(x_i, x_j; t, t) dx_i dx_j } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(x_i, x_j; t, t)} is the joint distribution desity function between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_i} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_j} .
Intuitively, the covariance of a vector random process Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t)} describes how elements of the process vary together. If the covariance is zero, then the two elements are independent.
Q (2006): Can you explain the jump from pdfs to correlations in more detail?
The probability density function (pdf), Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(x; t)} tells us how the value of a random process is distributed at a particular time:
<amsmath> P(a \leq X(t) \leq b) = \int_a^b p(x; t) dx.
</amsmath>You can interpret this by thinking of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X(t)} as a separate random variable for each time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t}
The correlation for a random process tells us how the value of a random process at one time, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1} is related to the value at a different time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2} . This relationship is probabalistic, so it is also described in terms of a distribution. In particular, we use the joint probability density function, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(x_1, x_2; t_1, t_2)} to characterize this:
<amsmath> P(a_1 \leq X_1(t_1) \leq b_1, a_2 \leq X_2(t_2) \leq b_2) = \int_{a_1}^{b_1} \int_{a_2}^{b_2} p(x_1, x_2; t_1, t_2) dx_1 dx_2
</amsmath>Given any random process, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(x_1, x_2; t_1, t_2)} descibes (as a density) how the value of the random variable at time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1} is related (or "correlated") with the value at time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2} . We can thus describe a random process according to its joint probability density function.
In practice, we don't usually describe random processes in terms of their pdfs and joint pdfs. It is usually easier to describe them in terms of their statistics (mean, variance, etc). In particular, we almost never describe the correlation in terms of joint pdfs, but instead use the correlation function:
<amsmath> \rho(t, \tau) = E\{X(t) X(\tau)\} = \int_{-\infty}^\infty \int_{-\infty}^\infty x_1 x_2 p(x_1, x_2; t, \tau) dx_1 dx_2
</amsmath>The utility of this particular function is seen primarily through its application: if we know the correlation for one random process and we "filter" that random process through a linear system, we can compute the correlation for the corresponding output process.
Q (2006): What is the meaning of a white noise process
The definition of a white noise process is that it is a Gaussian process with constant power spectral density. The intution behind this definition is that the spectral content of the process is constant at all frequencies. The term "white" noise comes from the fact that the color "white" comes from having light present at all frequencies.
Another interpretation of the white noise is through the power spectrum of a signal. In this case, we simply compute the Fourier transform of a signal Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(t)} . The signal is said to be white if it has constant spectrum across all frequencies.
More information
Q (2006): What is a random process (in relation to transfer function)
Formally, a random process is a continuous collection of random variables Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t)} . It is perhaps easiest to think first of a discrete time random processFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_k} . At each time instant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_k} is a random variable according to some distribution. If the process is white, then there is no correlation between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_k} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_l} when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k \neq l} . If, on the other hand, the value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_k} gives us information about what Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_l} will be, then the processes are correlated and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho(k, l)} is the correlation function.
These concepts can also be written in continous time, in which case each Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t)} is a random variable and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho(t, s)} is the correlation function. This takes some time to get used to since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} is not a signal, but rather a description of a class of signals (satisfying some probability measures).
A transfer function describes how we map signals in the frequency domain (see Åström and Murray). We can use transfer functions to describe how random processes are mapped through a linear system (this is called spectral response; see lecture notes or text)
More information
Q (2006): what is the transfer function for a parallel combination of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_1(s)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_2(s)} ?
If two transfer functions are in parallel (meaning: they receive the same input and the the output is the sum of the outputs from the individual transfer functions), the net transfer function is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_1(s) + H_2(s)} . Note that this is different than the formula that you get when you have parallel interconnections of resistors in electrical engineering. This is because when two outputs come together in a circuit diagram this restricts the voltage to be the same at the corresponding terminals, whereas in a block diagram we sum the output signals.