CDS 110b: Optimal Control: Difference between revisions

From Murray Wiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 3: Line 3:


* {{cds110b-wi08 pdfs|L2-1_optimal.pdf|Lecture notes: optimal control}}
* {{cds110b-wi08 pdfs|L2-1_optimal.pdf|Lecture notes: optimal control}}
* Homework 2 (due 22 Jan @ 5 pm): {{obc08|problems 2.3, 2.4a-d, 2.6}}


== References and Further Reading ==
== References and Further Reading ==
* R. M. Murray, ''Optimization-Based Control''. Preprint, 2008: {{cds110b-wi08 pdfs|optimal_14Jan08.pdf|Chapter 2 - Optimal Control}}
* {{cds110b-pdfs|LS95-optimal.pdf|Excerpt from LS95 on optimal control}} - This excerpt is from [http://books.google.com/books?ie=UTF-8&hl=en&vid=ISBN0471033782&id=jkD37elP6NIC Lewis and Syrmos, 1995] and gives a derivation of the necessary conditions for optimaliity.  A few pages have been left out from the middle that contained some additional examples (which you can find in similar books in the library, if you are interested).  Other parts of the book can be searched via [http://books.google.com Google Books] and purchased online.
* {{cds110b-pdfs|LS95-optimal.pdf|Excerpt from LS95 on optimal control}} - This excerpt is from [http://books.google.com/books?ie=UTF-8&hl=en&vid=ISBN0471033782&id=jkD37elP6NIC Lewis and Syrmos, 1995] and gives a derivation of the necessary conditions for optimaliity.  A few pages have been left out from the middle that contained some additional examples (which you can find in similar books in the library, if you are interested).  Other parts of the book can be searched via [http://books.google.com Google Books] and purchased online.
* [http://www.statslab.cam.ac.uk/~rrw1/oc/L13.pdf Notes on Pontryagin's Maximum Principle] - these come from a set of [http://www.statslab.cam.ac.uk/~rrw1/oc/index.html lecture notes on optimization and control] by [http://www.statslab.cam.ac.uk/~rrw1/ Richard Weber] at Cambridge University.  The notes are based on dynamic programming (DP) and uses a slightly different notation than we used in class.
* [http://www.statslab.cam.ac.uk/~rrw1/oc/L13.pdf Notes on Pontryagin's Maximum Principle] - these come from a set of [http://www.statslab.cam.ac.uk/~rrw1/oc/index.html lecture notes on optimization and control] by [http://www.statslab.cam.ac.uk/~rrw1/ Richard Weber] at Cambridge University.  The notes are based on dynamic programming (DP) and uses a slightly different notation than we used in class.

Revision as of 06:23, 15 January 2008

CDS 110b Schedule Project Course Text

This lecture provides an overview of optimal control theory. Beginning with a review of optimization, we introduce the notion of Lagrange multipliers and provide a summary of the Pontryagin's maximum principle.

References and Further Reading

Frequently Asked Questions

Q: In the example on Bang-Bang control discussed in the lecture, how is the control law for obtained?

Pontryagin's Maximum Principle says that has to be chosen to minimise the Hamiltonian for given values of and . In the example, . At first glance, it seems that the more negative is the more will be minimised. And since the most negative value of allowed is , . However, the co-efficient of may be of either sign. Therefore, the sign of has to be chosen such that the sign of the term is negative. That's how we come up with .

Shaunak Sen, 12 Jan 06

Q: Notation question for you: In the Lecture notes from Wednesday, I'm assuming that is the final time and (superscript T) is a transpose operation. Am I correct in my assumption?

Yes, you are correct.

Jeremy Gillula, 07 Jan 05

Q: What do you mean by penalizing something, from Q>=0 "penalizes" state error?

According to the form of the quadratic cost function , there are three quadratic terms such as , , and . When and if is relative big, the value of will have bigger contribution to the value of . In order to keep small, must be relatively small. So selecting a big can keep in small value regions. This is what the "penalizing" means.

So in the optimal control design, the relative values of , , and represent how important , , and are in the designer's concerns.

Zhipu Jin,13 Jan 03