CDS 140a Winter 2014 Homework 4: Difference between revisions

From Murray Wiki
Jump to navigationJump to search
(Created page with "{{CDS homework | instructor = R. Murray, D. MacMartin | course = ACM 101b/AM 125b/CDS 140a | semester = Winter 2014 | title = Problem Set #4 | issued = 28 Jan 2014 (Tue) ...")
 
No edit summary
Line 14: Line 14:


<ol>
<ol>
<!-- Removed in 2014; problem seems very trivial; what's the point?
<li>'''Perko, Section 2.7, problem 1'''
<li>'''Perko, Section 2.7, problem 1'''
Write the system
Write the system
Line 32: Line 33:
with $\lambda_1<0$, $\lambda_2>0$ and $G(y)$ is quadratic in $y_1$ and $y_2$.
with $\lambda_1<0$, $\lambda_2>0$ and $G(y)$ is quadratic in $y_1$ and $y_2$.
</li>
</li>
-->


<li>'''Perko, Section 2.7, problem 2'''
<li>'''Perko, Section 2.7, problem 2'''

Revision as of 17:44, 25 January 2014

R. Murray, D. MacMartin Issued: 28 Jan 2014 (Tue)
ACM 101b/AM 125b/CDS 140a, Winter 2014 Due: 4 Feb 2014 (Wed) @ noon
Turn in to box outside Steele House

__MATHJAX__

WARNING: This homework set is still under preparation. This banner will be removed when it is finalized

Note: In the upper left hand corner of the second page of your homework set, please put the number of hours that you spent on this homework set (including reading).

  1. Perko, Section 2.7, problem 2 Find the first three successive approximations $u^{(1)}(t,a)$, $u^{(2)}(t,a)$, and $u^{(3)}(t,a)$ for
    <amsmath>

    \aligned \dot{x}_1&=-x_1,\\ \dot{x}_2&=x_2+x_1^2 \endaligned

    </amsmath>

    and use $u^{(3)}(t,a)$ to approximate $S$ near the origin. Also approximate the unstable manifold $U$ near the origin for this system. Note that $u^{(2)}(t,a)=u^{(3)}(t,a)$ and therefore $u^{(j+1)}(t,a)=u^{(j)}(t,a)$ for $j\geq 2$. Thus $u(t,a)=u^{(2)}(t,a)$ which gives the exact function defining $S$.

  2. Perko, Section 2.7, problem 3 Solve the system in Problem 2 and show that $S$ and $U$ are given by
    <amsmath>

    S:\,x_2=-\frac{x_1^2}{3}

    </amsmath>
    <amsmath>

    U:\,x_1=0

    </amsmath>

    Sketch $S$, $U$, $E^s$ and $E^u$.

  3. Prove that if
    <amsmath>

    \aligned \dot{x}&=f(x,y),\qquad x\in\mathbb{R}^k\\ \dot{y}&=g(x,y),\qquad g\in\mathbb{R}^m \endaligned

    </amsmath>

    then the manifold $S=\{(x,y)\in\mathbb R^k\times\mathbb R^m|y=h(x)\}$ is an invariant manifold of the system if

    <amsmath>

    g(x,h(x))=Dh(x)f(x,h(x))

    </amsmath>

    Use this result to compute the stable manifold for the system of problem 2 and 3 above using the Taylor series for $h(x)$ to define $S=\{(x_1,x_2)|x_2=h(x)\}$ and matching coefficients to solve for $h(x)$.

    Hint: One way to show $S$ is an invariant manifold in $\mathbb R^2$ is to show that the normal vector (orthogonal to the tangent to $S$ at $(x,h(x))$) is orthogonal to the vector field $(f,g)$ at that point. (It is sufficient to prove the result for $\mathbb R^2$.)

  4. Perko, Section 2.7, Problem 6 Let $E$ be an open subset of $\mathbb{R}^n$ containing the origin. Use the fact that if $F\in C^1(E)$ then for all $x, y\in N_\delta(0)\subset E$ there exists a $\xi\in N_\delta(0)$ such that
    <amsmath>

    |F(x)-F(y)|\leq\|DF(\xi)\|\,|x-y|

    </amsmath>

    (cf. Theorem 4.19 and the proof of Theorem 9.19 in [R]) to prove that if $F\in C^1(E)$ and $F(0)=DF(0)=0$ then given any $\epsilon>0$ there exists a $\delta>0$ such that for all $x, y\in N_\delta(0)$ we have

    <amsmath>

    |F(x)-F(y)|<\epsilon |x-y|

    </amsmath>
  5. Perko, Section 2.9, problem 2(a)(b) Determine the stability of the equilibrium points of the system (1) with $f(x)$ given by
    <amsmath>

    (a)\quad\begin{bmatrix}x_1^2-x_2^2-1\\2x_2\end{bmatrix}

    </amsmath>
    <amsmath>

    (b)\quad\begin{bmatrix}x_2-x_1^2+2\\2x_2^2-2x_1x_2\end{bmatrix}

    </amsmath>