CDS 101/110 - State Feedback: Difference between revisions

From Murray Wiki
Jump to navigationJump to search
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{cds101-fa08}}
{{cds101-fa08 lecture|prev=Linear Systems|next=Output Feedback}}


{{righttoc}}
{{righttoc}}
== Overview ==
== Overview ==


'''Monday:'''  Reachability and State Feedback ({{cds101 handouts placeholder|L5-1_reachability.pdf|Slides}}, {{cds101 mp3 placeholder|cds101-2007-10-29.mp3|MP3}})
'''Monday:'''  Reachability and State Feedback ({{cds101 handouts placeholder|L5-1_reachability.pdf|Slides}}, {{cds101 mp3|cds101-2008-10-20.mp3|MP3}})


This lecture introduces the concept of reachability and explores the use of state space feedback for control of linear systems. Reachability is defined as the ability to move the system from one condition to another over finite time. The reachability matrix test is given to check if a linear system is reachable, and the test is applied to several examples. The concept of (linear) state space feedback is introduced and the ability to place eigenvalues of the closed loop system arbitrarily is related to reachability. A cart and pendulum system and the predator prey problem are used as examples.
This lecture introduces the concept of reachability and explores the use of state space feedback for control of linear systems. Reachability is defined as the ability to move the system from one condition to another over finite time. The reachability matrix test is given to check if a linear system is reachable, and the test is applied to several examples. The concept of (linear) state space feedback is introduced and the ability to place eigenvalues of the closed loop system arbitrarily is related to reachability. A cart and pendulum system and the predator prey problem are used as examples.
Line 12: Line 12:
* MATLAB code: [http://www.cds.caltech.edu/~macmardg/cds110a-fa08/predprey_calcs.m L5 predprey_calcs.m], {{cds101 matlab|predprey.m}}, [http://www.cds.caltech.edu/~macmardg/cds110a-fa08/predprey_rh.m predprey_rh.m],
* MATLAB code: [http://www.cds.caltech.edu/~macmardg/cds110a-fa08/predprey_calcs.m L5 predprey_calcs.m], {{cds101 matlab|predprey.m}}, [http://www.cds.caltech.edu/~macmardg/cds110a-fa08/predprey_rh.m predprey_rh.m],


'''Wednesday:''' State Feedback Design: [http://www.cds.caltech.edu/~macmardg/cds110a-fa08/L4-2_statefbk.pdf Lecture notes] ({{cds101 mp3 placeholder|cds101-2007-10-31.mp3|MP3}})
'''Wednesday:''' State Feedback Design: [http://www.cds.caltech.edu/~macmardg/cds110a-fa08/L4-2_statefbk.pdf Lecture notes] ({{cds101 mp3|cds101-2008-10-22.mp3|MP3}})


This lecture will present more advanced analysis on reachability and on control using state feedback.   
This lecture will present more advanced analysis on reachability and on control using state feedback.   

Latest revision as of 05:57, 9 December 2008

CDS 101/110a Schedule Recitations FAQ AM08 (errata)

Overview

Monday: Reachability and State Feedback (Slides, MP3)

This lecture introduces the concept of reachability and explores the use of state space feedback for control of linear systems. Reachability is defined as the ability to move the system from one condition to another over finite time. The reachability matrix test is given to check if a linear system is reachable, and the test is applied to several examples. The concept of (linear) state space feedback is introduced and the ability to place eigenvalues of the closed loop system arbitrarily is related to reachability. A cart and pendulum system and the predator prey problem are used as examples.

Wednesday: State Feedback Design: Lecture notes (MP3)

This lecture will present more advanced analysis on reachability and on control using state feedback.

Reading

Homework

This homework set covers reachability and state feedback. The Whipple bicycle model is used as an example to illustrate state feedback with pole placement, and the dependence of both the tracking behaviour and the command response on the location chosen for the closed-loop poles.

FAQ

Monday <ncl>CDS 101/110 FAQ - Lecture 4-1, Fall 2008</ncl> Wednesday <ncl>CDS 101/110 FAQ - Lecture 4-2, Fall 2008</ncl> Friday <ncl>CDS 101/110 FAQ - Lecture 4-3, Fall 2008</ncl> Homework <ncl>CDS 101/110 FAQ - Homework 4, Fall 2008</ncl>