Search by property

From Murray Wiki
Jump to navigationJump to search

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Abstract" with value "ugmented finite transition systems generalize nondeterministic transitio". Since there have been only a few results, also nearby values are displayed.

Showing below up to 1 result starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Efficient control synthesis for augmented finite transition systems with an application to switching protocols  + (ugmented finite transition systems generalugmented finite transition systems generalize nondeterministic transition systems with additional liveness conditions. We propose efficient algorithms for synthesizing control protocols for augmented finite transition systems to satisfy high-level specifications expressed in a fragment of linear temporal logic (LTL). We then use these algorithms within a framework for switching protocol synthesis for discrete-time dynamical systems, where augmented finite transition systems are used for abstracting the underlying dynamics. We introduce a notion of minimality for abstractions of certain fidelity and show that such minimal abstractions can be exactly computed for switched affine systems. Additionally, based on this framework, we present a procedure for computing digitally implementable switching protocols for continuous-time systems. The effectiveness of the proposed framework is illustrated through two examples of temperature control for buildings.ples of temperature control for buildings.)
 (ugmented finite transition systems generalize nondeterministic transitio)
  • Designing Robustness to Temperature in a Feedforward Loop Circuit  + (âIncoherent feedforward loopsâ represent iâIncoherent feedforward loopsâ represent important biomolecular circuit elements capable of a rich set of dynamic behavior including adaptation and pulsed responses. Temperature can modulate some of these properties through its effect on the underlying reaction rate parameters. It is generally unclear how to design a circuit where these properties are robust to variations in temperature. Here, we address this issue using a combination of tools from control and dynamical systems theory as well as preliminary experimental measurements towards such a design. Using a structured uncertainty representation, we analyze a standard incoherent feedforward loop circuit, noting mechanisms that intrinsically confer temperature robustness to some of its properties. Further, we study design variants that can enhance this robustness to temperature, including different negative feedback configurations as well as conditions for perfect temperature compensation. Finally, we find that the response of an incoherent feedforward loop circuit in cells can change with temperature. These results present groundwork for the design of a temperature-robust incoherent feedforward loop circuit.obust incoherent feedforward loop circuit.)