Difference between revisions of "NCS: Receding Horizon Control"

From Murray Wiki
Jump to navigationJump to search
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
  
 
<!-- Enter a 1 paragraph description of the contents of the lecture.  Make sure to include any key concepts, so that the wiki search feature will pick them up -->
 
<!-- Enter a 1 paragraph description of the contents of the lecture.  Make sure to include any key concepts, so that the wiki search feature will pick them up -->
This is the template for CDS 270 lectures. If you edit this page, you will see comments describing what goes in each section. '''Do not edit this template.''' See [[CDS 270: Information for Lecturers]] for more information on how to create a wiki page corresponding to a lecture.
+
In this lecture the receding horizon control (RHC) principle is described and the main ingredients required for its stability are discussed. After a brief review of Lyapunov stability, the use of terminal cost, constraint and controller is shown in a discrete-time constrained nonlinear system formulation. Treatment of stability is also illustrated in a continuous-time unconstrained nonlinear system setting, using a control Lyapunov function (CLF)-based terminal cost.
  
 
== Lecture Materials ==
 
== Lecture Materials ==
 
<!-- Include links to materials that you used in your lecture.  At a minimum, this should include a link to your lecture presentation.  You might also include links to MATLAB scripts or other source code that students would find useful -->
 
<!-- Include links to materials that you used in your lecture.  At a minimum, this should include a link to your lecture presentation.  You might also include links to MATLAB scripts or other source code that students would find useful -->
 
<!-- Sample lecture link: * [[Media:L1-1_Intro.pdf|Lecture: Networked Control Systems: Course Overview]] -->
 
<!-- Sample lecture link: * [[Media:L1-1_Intro.pdf|Lecture: Networked Control Systems: Course Overview]] -->
 +
[[Media:L3-2_rhc.pdf|Lecture: Receding Horizon Control]]
  
 
== Reading ==
 
== Reading ==

Latest revision as of 22:36, 10 April 2006

Prev: NTG Course Home Next: Alice Planner

In this lecture the receding horizon control (RHC) principle is described and the main ingredients required for its stability are discussed. After a brief review of Lyapunov stability, the use of terminal cost, constraint and controller is shown in a discrete-time constrained nonlinear system formulation. Treatment of stability is also illustrated in a continuous-time unconstrained nonlinear system setting, using a control Lyapunov function (CLF)-based terminal cost.

Lecture Materials

Lecture: Receding Horizon Control

Reading

  • Constrained model predictive control: Stability and optimality, D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert. Automatica, 2000, Vol. 36, No. 6, pp. 789-814. This is one of the most referenced comprehensive survey papers on MPC. Gives a nice overview about its history and explains the most important issues and various approaches.

  • Online Control Customization via Optimization-Based Control, R. M. Murray et al. In Software-Enabled Control: Information Technology for Dynamical Systems, T. Samad and G. Balas (eds.), IEEE Press, 2001. This paper talks about the CLF-based nonlinear RHC approach and its application on the Caltech ducted fan using NTG.

Additional Resources