Lecture 7.1 bugs: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Notes and bugs from Lecture 7.1. | Notes and bugs from Lecture 7.1. | ||
The Nyquist D contour is defined as being traversed in the counter-clockwise direction. On Page 5, if there were arrows on the "D" countour, they would show the tracing starting at the origin and moving downard toward <math>-j\infty</math>, traversing around toward <math>+j \infty</math> at <math>|s|=R</math> where < | The Nyquist D contour is defined as being traversed in the counter-clockwise direction. On Page 5, if there were arrows on the "D" countour, they would show the tracing starting at the origin and moving downard toward <math>-j\infty</math>, traversing around toward <math>+j \infty</math> at <math>|s|=R</math> where <amsmath>R \approx \infty</amsmath>, and then traversing back to the origin. Then the Nyquist mapping (the second figure on P. 5) shows the value of <math>L(s)</math> in the complex plane as <math>s</math> takes on all of the values of the "D" contour. | ||
Bug 1: With that convention, which is the one used in the book, the Nyquist mapping would have arrows in the opposite direction as shown. They are different because that plot was generated in MATLAB, which uses a convention that the traverse is performed in the opposite direction. So you should mentally reverse the arrows in all Nyquist plots shown in this lecture. | Bug 1: With that convention, which is the one used in the book, the Nyquist mapping would have arrows in the opposite direction as shown. They are different because that plot was generated in MATLAB, which uses a convention that the traverse is performed in the opposite direction. So you should mentally reverse the arrows in all Nyquist plots shown in this lecture. |
Revision as of 01:16, 13 November 2007
Notes and bugs from Lecture 7.1.
The Nyquist D contour is defined as being traversed in the counter-clockwise direction. On Page 5, if there were arrows on the "D" countour, they would show the tracing starting at the origin and moving downard toward , traversing around toward at where <amsmath>R \approx \infty</amsmath>, and then traversing back to the origin. Then the Nyquist mapping (the second figure on P. 5) shows the value of in the complex plane as takes on all of the values of the "D" contour.
Bug 1: With that convention, which is the one used in the book, the Nyquist mapping would have arrows in the opposite direction as shown. They are different because that plot was generated in MATLAB, which uses a convention that the traverse is performed in the opposite direction. So you should mentally reverse the arrows in all Nyquist plots shown in this lecture.
With this convention established, then the Nyquist theorem works with N=#counter-clockwise encirclements of -1, as stated in the notes. As stated in lecture, amnyquist() from the book's web page will draw the nyquist diagrams with the arrows in the convention used in the course and by mathematicians.
Bug 2: On page 13, N is #CCW encirclements, not #CW encirclements (as above).
Bug 3: The Nyquist diagrams on P. 10 and 13 show a unit circle referring to unity gain magnitude. But they are not drawn to scale according to the axes on the figures -- the width is correct, but they should be squished vertically (along the imaginary axis) by a factor of 2.
--Fuller 16:33, 12 November 2007 (PST)