Difference between revisions of "CDS 212, Homework 1, Fall 2010"

From Murray Wiki
Jump to navigationJump to search
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{CDS 212 draft HW}}
 
 
{{CDS homework
 
{{CDS homework
 
  | instructor = J. Doyle
 
  | instructor = J. Doyle
  | course = CDS 112
+
  | course = CDS 212
 
  | semester = Fall 2010
 
  | semester = Fall 2010
 
  | title = Problem Set #1
 
  | title = Problem Set #1
Line 16: Line 15:
  
 
<ol>
 
<ol>
<li>DFT 2.1, page 28<br>
+
<li>[DFT 2.1, page 28<br>
 
Suppose that <amsmath>u(t)</amsmath> is a continuous signal whose derivative <amsmath>\dot
 
Suppose that <amsmath>u(t)</amsmath> is a continuous signal whose derivative <amsmath>\dot
 
u(t)</amsmath> is also continuous.  Which of the following quantities qualifies
 
u(t)</amsmath> is also continuous.  Which of the following quantities qualifies
Line 29: Line 28:
 
</li>
 
</li>
  
<li> DFT 2.4, page 29] <br>
+
<li> [DFT 2.4, page 29] <br>
 
Let <amsmath>D</amsmath> be a pure time delay of <amsmath>\tau</amsmath> seconds with transfer function
 
Let <amsmath>D</amsmath> be a pure time delay of <amsmath>\tau</amsmath> seconds with transfer function
<amsmath> \widehat D(s) = e^{-s \tau} </amsmath>. A norm <amsmath>\|\cdot\|</amsmath> on transfer functions is <amsmath> \emph {time-delay invariant}</amsmath> if for
+
<amsmath> \widehat D(s) = e^{-s \tau} </amsmath>. A norm <amsmath>\|\cdot\|</amsmath> on transfer functions is ''time-delay invariant'' if for
 
every bounded transfer function <amsmath>\widehat G</amsmath> and every <amsmath>\tau > 0</amsmath> we have
 
every bounded transfer function <amsmath>\widehat G</amsmath> and every <amsmath>\tau > 0</amsmath> we have
<ol type="">
+
<center><amsmath>
<amsmath>\textstyle \| \widehat D \widehat G \| = \| \widehat G \| </amsmath>
+
\| \widehat D \widehat G \| = \| \widehat G \|
</ol>
+
</amsmath></center>
 
Determine if the 2-norm and <amsmath>\infty</amsmath>-norm are time-delay invariant.
 
Determine if the 2-norm and <amsmath>\infty</amsmath>-norm are time-delay invariant.
 
</li>
 
</li>
Line 44: Line 43:
 
</li>
 
</li>
  
<li> DFT 2.7, page 30] <br>  
+
<li> [DFT 2.7, page 30] <br>  
 
Derive the <amsmath>\infty</amsmath>-norm to <amsmath>\infty</amsmath>-norm system gain for a stable,
 
Derive the <amsmath>\infty</amsmath>-norm to <amsmath>\infty</amsmath>-norm system gain for a stable,
 
proper plant <amsmath>\widehat G</amsmath>.  (Hint: write <amsmath>\widehat G = c + \widehat G_1</amsmath> where <amsmath>c</amsmath> is a constant
 
proper plant <amsmath>\widehat G</amsmath>.  (Hint: write <amsmath>\widehat G = c + \widehat G_1</amsmath> where <amsmath>c</amsmath> is a constant
Line 64: Line 63:
 
<amsmath>\widehat G(s) = \frac{s+2}{4s + 1}</amsmath>
 
<amsmath>\widehat G(s) = \frac{s+2}{4s + 1}</amsmath>
 
and input <amsmath>u</amsmath> and output <amsmath>y</amsmath>.  Compute
 
and input <amsmath>u</amsmath> and output <amsmath>y</amsmath>.  Compute
<ol>
+
<center><amsmath>
<amsmath>\| G \|_1 = \sup_{\|u\|_\infty = 1} \| y \|_\infty</amsmath>
+
  \| G \|_1 = \sup_{\|u\|_\infty = 1} \| y \|_\infty
</ol>
+
</amsmath></center>
 
and find an input which achieves the supremum.
 
and find an input which achieves the supremum.
 
</li>
 
</li>
Line 72: Line 71:
 
<li> [DFT 2.12, page 30] <br>
 
<li> [DFT 2.12, page 30] <br>
 
For a linear system with input <amsmath>u</amsmath> and output <amsmath>y</amsmath>, prove that
 
For a linear system with input <amsmath>u</amsmath> and output <amsmath>y</amsmath>, prove that
<ol>
+
<center><amsmath>
  <amsmath>\sup_{\|u\| \leq 1} \| y \| =
+
  \sup_{\|u\| \leq 1} \| y \| =
     \sup_{\|u\| = 1} \| y \|</amsmath>
+
     \sup_{\|u\| = 1} \| y \|
</ol>
+
</amsmath></center>
 
where <amsmath>\|\cdot\|</amsmath> is any norm on signals.
 
where <amsmath>\|\cdot\|</amsmath> is any norm on signals.
</li>
 
 
<li>Consider a second order mechanical system with transfer function
 
<ol>
 
<amsmath>  \widehat G(s) = \frac{1}{s^2 + 2 \omega_n \zeta s + \omega_n^2}</amsmath>
 
</ol>
 
(<amsmath>\omega_n</amsmath> is the natural frequence of the system and <amsmath>\zeta</amsmath> is the
 
damping ratio).  Setting <amsmath>\omega_n = 1</amsmath>, write a short MATLAB
 
program to generate a plot of the <amsmath>\infty</amsmath>-norm as a function of the
 
damping ratio <amsmath>\zeta > 0</amsmath>.
 
 
</li>
 
</li>

Latest revision as of 17:42, 28 September 2010

J. Doyle Issued: 28 Sep 2010
CDS 212, Fall 2010 Due: 7 Oct 2010

Reading

  • DFT, Chapters 1 and 2
  • Dullerud and Paganini, Ch 3

Problems

  1. [DFT 2.1, page 28
    Suppose that <amsmath>u(t)</amsmath> is a continuous signal whose derivative <amsmath>\dot u(t)</amsmath> is also continuous. Which of the following quantities qualifies as a norm for <amsmath>u</amsmath>:
    1. <amsmath>\textstyle \sup_t |\dot u(t)|</amsmath>
    2. <amsmath>\textstyle |u(0)| + \sup_t |\dot u(t)|</amsmath>
    3. <amsmath>\textstyle \max \{ \sup_t |u(t)|,\, \sup_t |\dot u(t)| \}</amsmath>
    4. <amsmath>\textstyle \sup_t |u(t)| + \sup_t |\dot u(t)|</amsmath>

    Make sure to give a thorough answer (not just yes or no).

  2. [DFT 2.4, page 29]
    Let <amsmath>D</amsmath> be a pure time delay of <amsmath>\tau</amsmath> seconds with transfer function <amsmath> \widehat D(s) = e^{-s \tau} </amsmath>. A norm <amsmath>\|\cdot\|</amsmath> on transfer functions is time-delay invariant if for every bounded transfer function <amsmath>\widehat G</amsmath> and every <amsmath>\tau > 0</amsmath> we have
    <amsmath>
    \| \widehat D \widehat G \| = \| \widehat G \|
    
    </amsmath>

    Determine if the 2-norm and <amsmath>\infty</amsmath>-norm are time-delay invariant.

  3. [DFT 2.5, page 30]
    Compute the 1-norm of the impluse response corresponding to the transfer function <amsmath> \frac{1}{\tau s + 1}, \quad \tau > 0 </amsmath>.
  4. [DFT 2.7, page 30]
    Derive the <amsmath>\infty</amsmath>-norm to <amsmath>\infty</amsmath>-norm system gain for a stable, proper plant <amsmath>\widehat G</amsmath>. (Hint: write <amsmath>\widehat G = c + \widehat G_1</amsmath> where <amsmath>c</amsmath> is a constant and <amsmath>\widehat G_1</amsmath> is strictly proper.)
  5. [DFT 2.8, page 30]
    Let <amsmath>\widehat G</amsmath> be a stable, proper plant (but not necessarily strictly proper).
    1. Show that the <amsmath>\infty</amsmath>-norm of the output <amsmath>y</amsmath> given an input <amsmath>u(t) = \sin(\omega t)</amsmath> is <amsmath>|\widehat G(jw)|</amsmath>.
    2. Show that the 2-norm to 2-norm system gain for <amsmath>\widehat G</amsmath> is <amsmath>\| \widehat G \|_\infty</amsmath> (just as in the strictly proper case).
  6. [DFT 2.11, page 30]
    Consider a system with transfer function <amsmath>\widehat G(s) = \frac{s+2}{4s + 1}</amsmath> and input <amsmath>u</amsmath> and output <amsmath>y</amsmath>. Compute
    <amsmath>
     \| G \|_1 = \sup_{\|u\|_\infty = 1} \| y \|_\infty
    
    </amsmath>

    and find an input which achieves the supremum.

  7. [DFT 2.12, page 30]
    For a linear system with input <amsmath>u</amsmath> and output <amsmath>y</amsmath>, prove that
    <amsmath>
     \sup_{\|u\| \leq 1} \| y \| =
       \sup_{\|u\| = 1} \| y \|
    
    </amsmath>

    where <amsmath>\|\cdot\|</amsmath> is any norm on signals.