# Difference between revisions of "CDS 140b Spring 2014 Homework 3"

From Murray Wiki

Jump to navigationJump to searchLine 16: | Line 16: | ||

<li>'''Khalil, Problem 5.13'''</li> | <li>'''Khalil, Problem 5.13'''</li> | ||

<li>'''Khalil, Problem 5.16''' | <li>'''Khalil, Problem 5.16''' | ||

− | * Hint: Try $$V(x) = \int_0^{x_1} \sigma(y) dt + \frac{1}{2} (x_1^2 + x_2^2)$$. | + | * Hint: Try using the Lyapunov function $$V(x) = \int_0^{x_1} \sigma(y) dt + \frac{1}{2} (x_1^2 + x_2^2)$$. |

</li> | </li> | ||

<li>'''Khalil, Problem 5.23'''</li> | <li>'''Khalil, Problem 5.23'''</li> | ||

</ol> | </ol> |

## Revision as of 05:22, 21 April 2014

R. Murray, D. MacMartin | Issued: 21 Apr 2014 (Wed) |

CDS 140b, Spring 2014 | Due: 1 May 2014 (Thu) |

__MATHJAX__

**Khalil, Problem 4.35****Khalil, Problem 4.39****Khalil, Problem 4.57****Khalil, Problem 5.1****Khalil, Problem 5.13****Khalil, Problem 5.16**- Hint: Try using the Lyapunov function $$V(x) = \int_0^{x_1} \sigma(y) dt + \frac{1}{2} (x_1^2 + x_2^2)$$.

**Khalil, Problem 5.23**