CDS 140b Spring 2014 Homework 3: Difference between revisions

From Murray Wiki
Jump to navigationJump to search
No edit summary
mNo edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{CDS homework
{{CDS homework
  | instructor = R. Murray, D. MacMartin
  | instructor = R. Murray, D. MacMartin
Line 16: Line 15:
<li>'''Khalil, Problem 5.13'''</li>
<li>'''Khalil, Problem 5.13'''</li>
<li>'''Khalil, Problem 5.16'''
<li>'''Khalil, Problem 5.16'''
* Hint: Try using the Lyapunov function $$V(x) = \int_0^{x_1} \sigma(y) dt + \frac{1}{2} (x_1^2 + x_2^2)$$.
* Hint: Try using the Lyapunov function $$V(x) = \int_0^{x_1} \sigma(y) dy + \frac{1}{2} (x_1^2 + x_2^2)$$.
</li>
</li>
<li>'''Khalil, Problem 5.23'''</li>
<li>'''Khalil, Problem 5.23'''</li>
</ol>
</ol>

Latest revision as of 15:18, 27 April 2014

R. Murray, D. MacMartin Issued: 21 Apr 2014 (Wed)
CDS 140b, Spring 2014 Due: 1 May 2014 (Thu)

__MATHJAX__

  1. Khalil, Problem 4.35
  2. Khalil, Problem 4.39
  3. Khalil, Problem 4.57
  4. Khalil, Problem 5.1
  5. Khalil, Problem 5.13
  6. Khalil, Problem 5.16
    • Hint: Try using the Lyapunov function $$V(x) = \int_0^{x_1} \sigma(y) dy + \frac{1}{2} (x_1^2 + x_2^2)$$.
  7. Khalil, Problem 5.23