Difference between revisions of "CDS 140b Spring 2014 Homework 3"

From Murray Wiki
Jump to navigationJump to search
Line 16: Line 16:
 
<li>'''Khalil, Problem 5.13'''</li>
 
<li>'''Khalil, Problem 5.13'''</li>
 
<li>'''Khalil, Problem 5.16'''
 
<li>'''Khalil, Problem 5.16'''
* Hint: Try $$V(x) = \int_0^{x_1} \sigma(y) dt + \frac{1}{2} (x_1^2 + x_2^2)$$.
+
* Hint: Try using the Lyapunov function $$V(x) = \int_0^{x_1} \sigma(y) dt + \frac{1}{2} (x_1^2 + x_2^2)$$.
 
</li>
 
</li>
 
<li>'''Khalil, Problem 5.23'''</li>
 
<li>'''Khalil, Problem 5.23'''</li>
 
</ol>
 
</ol>

Revision as of 05:22, 21 April 2014

R. Murray, D. MacMartin Issued: 21 Apr 2014 (Wed)
CDS 140b, Spring 2014 Due: 1 May 2014 (Thu)

__MATHJAX__

  1. Khalil, Problem 4.35
  2. Khalil, Problem 4.39
  3. Khalil, Problem 4.57
  4. Khalil, Problem 5.1
  5. Khalil, Problem 5.13
  6. Khalil, Problem 5.16
    • Hint: Try using the Lyapunov function $$V(x) = \int_0^{x_1} \sigma(y) dt + \frac{1}{2} (x_1^2 + x_2^2)$$.
  7. Khalil, Problem 5.23