Difference between revisions of "CDS 101/110  Dynamic Behavior"
m (→Overview) 

Line 4:  Line 4:  
== Overview ==  == Overview ==  
'''Monday:''' Qualitative Analysis and Stability ({{cds101  '''Monday:''' Qualitative Analysis and Stability ({{cds101 handoutsL31_stability.pdfSlides}}, MP3)  
This lecture provides an introduction to stability of (nonlinear) control systems. Formal definitions of stability are given and phase portraits are introduced to help visualize the concepts. Local and global behavior of nonlinear systems is discussed, using a damped pendulum and the predatorprey problem as examples.  This lecture provides an introduction to stability of (nonlinear) control systems. Formal definitions of stability are given and phase portraits are introduced to help visualize the concepts. Local and global behavior of nonlinear systems is discussed, using a damped pendulum and the predatorprey problem as examples. 
Revision as of 05:52, 8 October 2006
See current course homepage to find most recent page available. 
CDS 101/110a  Schedule  Recitations  FAQ  AM06 (errata) 
Overview
Monday: Qualitative Analysis and Stability (Slides, MP3)
This lecture provides an introduction to stability of (nonlinear) control systems. Formal definitions of stability are given and phase portraits are introduced to help visualize the concepts. Local and global behavior of nonlinear systems is discussed, using a damped pendulum and the predatorprey problem as examples.
Wednesday: Stability Analysis (Slides, MP3)
Lyapunov functions are introduced as a method of proving stability for nonlinear systems. Simple examples are used to explain the concepts; domain specific examples will be presented in individual recitation sections.
Friday: Lyapunov Stability (Slides, MP3)
Handouts
Monday

Wednesday (CDS 110)

Friday 
Reading
 K. J. Åström and R. M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, Preprint, 2006. Chapter 3  Dynamic Behavior.
Homework
This homework set covers stability and performance through a series of application examples. The first problem provides a set of three realworld models in which the student must identify the equilibrium points and determine stability of the equilibrium points (through simulation). The second problem explores performance specification in the conext of the cruise control example, including step response and frequency response.
FAQ
Monday <ncl>CDS 101/110 FAQ  Lecture 31</ncl> Wednesday <ncl>CDS 101/110 FAQ  Lecture 32</ncl> Friday <ncl>CDS 101/110 FAQ  Lecture 33</ncl> Homework <ncl>CDS 101/110 FAQ  Homework 3</ncl>