CDS 212, Homework 5, Fall 2010
From Murray Wiki
Jump to navigationJump to search
- REDIRECT HW draft
J. Doyle | Issued: 26 Oct 2010 |
CDS 212, Fall 2010 | Due: 4 Nov 2010 |
Reading
- [PD], Chapter 4
Problems
- [PD 4.1]
Suppose <amsmath>A, X</amsmath> and <amsmath>C</amsmath> satisfy <amsmath>A^*X+XA+C^*C=0.</amsmath> Show that any two of the following implies the third:- <amsmath>A</amsmath> Hurwitz.
- <amsmath>(C,A)</amsmath> observable.
- <amsmath>X>0</amsmath>
-
Assume <amsmath>(A,B)</amsmath> is controllable. Show that <amsmath>(F,G)</amsmath> with
<amsmath> F=\left[\begin{array}{ccc} A&0\\C&0 \end{array}\right], G=\left[\begin{array}{ccc} B\\0 \end{array}\right],
</amsmath>is controllable if and only if
<amsmath> \left[\begin{array}{ccc} A&B\\C&0 \end{array}\right]
</amsmath>is a full row rank matrix.
- [PD 4.4]
Controllability gramian vs. controllability matrix. We have seen that the singular values of the controllability gramian <amsmath>X_c</amsmath> can be used to determine "how controllable" the states are. In this problem you will show that the controllability matrix<amsmath> M_c=\left[\begin{array}{ccccccc} B&AB&A^2B&\cdots&A^{n-1}B \end{array}\right]
</amsmath>cannot be used for the same purpose, since its singular values are unrelated to those of <amsmath>X_c</amsmath>. In particular, construct examples (<amsmath>A\in\mathcal{C}^{2\times 2}, B\in\mathcal{C}^{2\times 1}</amsmath> suffices) such that
- <amsmath>X_c=I</amsmath>, but <amsmath>\underline{\sigma}(M_c)</amsmath> is arbitrarily small.
- <amsmath>M_c=I</amsmath>, but <amsmath>\underline{\sigma}(X_c)</amsmath> is arbitrarily small.