CDS 131, Fall 2018: Difference between revisions
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
'''Teaching Assistants''' | '''Teaching Assistants''' | ||
* Mandy Huo (CDS) | * Mandy Huo (CDS) | ||
* Office hours: | * Office hours: Mondays, 5-6 pm, 243 Annenberg | ||
|} | |} | ||
This is the course homepage for CDS 131, Fall 2018. | This is the course homepage for CDS 131, Fall 2018. | ||
=== Course Syllabus === | === Course Syllabus === |
Revision as of 20:55, 29 September 2018
Linear Systems Theory | |
Instructors
|
Teaching Assistants
|
This is the course homepage for CDS 131, Fall 2018.
Course Syllabus
Basic system concepts; state-space and I/O representation. Properties of linear systems, including stability, performance, robustness. Reachability, observability, minimality, state and output-feedback.
This course is intended for first year graduate students in controls, advanced undergraduates in EE and ChE who have taken a basic controls course (e.g., CDS 110, ChE 105, EE 113), and motivated graduate students in other disciplines would would like to learn more about linear systems and control. All students taking the course should have a good understanding of (matrix) differential equations and linear algebra.
Lecture Schedule
With the exception of the first week, there will be two 1-hour lectures per week, with the specific days varying from week-to-week. The lecture days for each week will be announced in class and posted here at least 1 week in advance.
Date | Topic | Reading | Homework |
Week 1 1 Oct |
Introduction and review
|
FBS2e, Ch 1 (skim), 2 (skim) DFT Ch 1 (skim), Sec 2.1-2.4 |
HW #1 |
Week 2 8 Oct |
Linear I/O systems
|
FBS2e, Ch 3, Sec 5.1-5.3, Ch 6 DFT Sec 2.6 |
HW #2 |
Week 3 15 Oct |
Reachability
|
FBS2e, Sec 7.1, 7.2 | HW #3 |
Week 4 22 Oct |
State feedback
|
FBS2e, Sec 7.2, 7.3, 7.5 | HW #4 |
Week 5 29 Oct |
Observability and state estimation
|
FBS2e, Sec 8.1-8.4 | HW #5 |
Week 6 5 Nov |
Frequency domain representations
|
FBS2e, Ch 9 | HW #6 |
Week 7 12 Nov |
Generalized norms of signals and systems
|
FBS2e Sec 10.5, DFT Ch 2, 3 | HW #7 |
Week 8/9 19 Nov |
Uncertainty and robustness
|
FBS2e Ch 13, 14 DFT Ch 4, Ch 6 |
HW #8 |
Week 9/10 28 Nov |
Robust control synthesis
|
FBS2e Ch 14 DFT Ch 7, 8 |
HW #9 |
Week 10
|
Review for final | Final |
Grading
The final grade will be based on homework sets, a midterm exam, and a final exam:
- Homework (50%): Homework sets will be handed out weekly and due on Wednesdays by 2 pm either in class or in the labeled box across from 107 Steele Lab. Each student is allowed up to two extensions of no more than 2 days each over the course of the term. Homework turned in after Friday at 2 pm or after the two extensions are exhausted will not be accepted without a note from the health center or the Dean. MATLAB/Python code and SIMULINK/Modelica diagrams are considered part of your solution and should be printed and turned in with the problem set (whether the problem asks for it or not).
- Midterm exam (20%): A midterm exam will be handed out at the beginning of midterms period (28 Oct) and due at the end of the midterm examination period (3 Nov). The midterm exam will be open book and computers will be allowed (though not required).
- Final exam (30%): The final exam will be handed out on the last day of class (4 Dec) and due at the end of finals week. It will be an open book exam and computers will be allowed (though not required).
Collaboration Policy
Collaboration on homework assignments is encouraged. You may consult outside reference materials, other students, the TA, or the instructor, but you cannot consult homework solutions from prior years and you must cite any use of material from outside references. All solutions that are handed in should be written up individually and should reflect your own understanding of the subject matter at the time of writing. MATLAB/Python scripts and plots are considered part of your writeup and should be done individually (you can share ideas, but not code).
No collaboration is allowed on the midterm or final exams.
Course Text and References
The primary course text is
- K. J. Astrom and Richard M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, Princeton University Press, 2008
This book is available via the Caltech online bookstore or via download from the companion web site. Note that the second edition of this book is in preparation for publication and will serve as the primary text for the course (but almost all of the material we will cover is also in the first edition).
The following additional references may also be useful:
- A. D. Lewis, A Mathematical Approach to Classical Control, 2003. Online access.
- J. Distefano III, A. R. Stubberud and Ivan J. Williams (Author), Schaum's Outline of Feedback and Control Systems, 2nd Edition, 2013.
In addition to the books above, the textbooks below may also be useful. They are available in the library (non-reserve), from other students, or you can order them online.
- B. Friedland, Control System Design: An Introduction to State-Space Methods, McGraw-Hill, 1986.