CDS 140b Spring 2014 Homework 3: Difference between revisions
From Murray Wiki
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
<li>'''Khalil, Problem 5.13'''</li> | <li>'''Khalil, Problem 5.13'''</li> | ||
<li>'''Khalil, Problem 5.16''' | <li>'''Khalil, Problem 5.16''' | ||
* Hint: Try $$V(x) = \int_0^{x_1} \sigma(y) dt + \frac{1}{2} (x_1^2 + x_2^2)$$. | * Hint: Try using the Lyapunov function $$V(x) = \int_0^{x_1} \sigma(y) dt + \frac{1}{2} (x_1^2 + x_2^2)$$. | ||
</li> | </li> | ||
<li>'''Khalil, Problem 5.23'''</li> | <li>'''Khalil, Problem 5.23'''</li> | ||
</ol> | </ol> |
Revision as of 05:22, 21 April 2014
R. Murray, D. MacMartin | Issued: 21 Apr 2014 (Wed) |
CDS 140b, Spring 2014 | Due: 1 May 2014 (Thu) |
__MATHJAX__
- Khalil, Problem 4.35
- Khalil, Problem 4.39
- Khalil, Problem 4.57
- Khalil, Problem 5.1
- Khalil, Problem 5.13
- Khalil, Problem 5.16
- Hint: Try using the Lyapunov function $$V(x) = \int_0^{x_1} \sigma(y) dt + \frac{1}{2} (x_1^2 + x_2^2)$$.
- Khalil, Problem 5.23