CDS 212, Homework 5, Fall 2010: Difference between revisions
No edit summary |
No edit summary |
||
Line 22: | Line 22: | ||
</ol> | </ol> | ||
</li> | </li> | ||
<li> | <li> | ||
Assume <amsmath>(A,B)</amsmath> is controllable. Show that <amsmath>(F,G)</amsmath> with | Assume <amsmath>(A,B)</amsmath> is controllable. Show that <amsmath>(F,G)</amsmath> with | ||
Line 36: | Line 35: | ||
<li>[PD 4.4]<br> | <li>[PD 4.4]<br> | ||
Controllability gramian vs. controllability matrix. We have seen that the singular values of the controllability gramian <amsmath>X_c</amsmath> can be used to determine "how controllable" the states are. In this problem you will show that the controllability matrix | Controllability gramian vs. controllability matrix. We have seen that the singular values of the controllability gramian <amsmath>X_c</amsmath> can be used to determine "how controllable" the states are. In this problem you will show that the controllability matrix | ||
</li> | |||
<center><amsmath> | <center><amsmath> | ||
M_c=\left[\begin{array}{ccccccc} B&AB&A^2B&\cdots&A^{n-1}B \end{array}\right] | M_c=\left[\begin{array}{ccccccc} B&AB&A^2B&\cdots&A^{n-1}B \end{array}\right] | ||
Line 46: | Line 45: | ||
</ol> | </ol> | ||
</li> | </li> | ||
<li> Prove the Schur complement inequality | <li> Prove the Schur complement inequality | ||
<center><amsmath> | <center><amsmath> | ||
\left[\begin{array}{ccccccc} A&B\\B^T&C \end{array}\right]\geq 0, C>0 \Longleftrightarrow A-BC^{-1}B^T\geq0, C>0: | \left[\begin{array}{ccccccc} A&B\\B^T&C \end{array}\right]\geq 0, C>0 \Longleftrightarrow A-BC^{-1}B^T\geq0, C>0: | ||
</amsmath></center> | </amsmath></center> | ||
</li> | |||
<li>We know that the discrete-time system <amsmath>X[k+1]=Ax[k]</amsmath> is stable (i.e, <amsmath>x[k]\rightarrow 0</amsmath> as <amsmath>k\rightarrow 0</amsmath>) if and only if all eigenvalues of <amsmath>A</amsmath> are inside the unit circle. Derive a necessary and sufficient LMI condition for stability of this system. | |||
</li> | |||
<li>Consider the following optimization problem: | |||
<center><amsmath> | |||
\max_{Q,\alpha}\; \alpha | |||
</amsmath></center> | |||
such that | |||
<center><amsmath> | |||
AQ+QA^T+\alpha Q\le 0, \quad Q>0 | |||
</amsmath></center> | |||
Find an analytical expression for the maximum value of <amsmath>\alpha</amsmath> in terms of <amsmath>A</amsmath>. | |||
</li> |
Revision as of 08:32, 26 October 2010
- REDIRECT HW draft
J. Doyle | Issued: 26 Oct 2010 |
CDS 212, Fall 2010 | Due: 4 Nov 2010 |
Reading
- [PD], Chapter 4
Problems
- [PD 4.1]
Suppose <amsmath>A, X</amsmath> and <amsmath>C</amsmath> satisfy <amsmath>A^*X+XA+C^*C=0.</amsmath> Show that any two of the following implies the third:- <amsmath>A</amsmath> Hurwitz.
- <amsmath>(C,A)</amsmath> observable.
- <amsmath>X>0</amsmath>
-
Assume <amsmath>(A,B)</amsmath> is controllable. Show that <amsmath>(F,G)</amsmath> with
<amsmath> F=\left[\begin{array}{ccc} A&0\\C&0 \end{array}\right], G=\left[\begin{array}{ccc} B\\0 \end{array}\right],
</amsmath>is controllable if and only if
<amsmath> \left[\begin{array}{ccc} A&B\\C&0 \end{array}\right]
</amsmath>is a full row rank matrix.
- [PD 4.4]
Controllability gramian vs. controllability matrix. We have seen that the singular values of the controllability gramian <amsmath>X_c</amsmath> can be used to determine "how controllable" the states are. In this problem you will show that the controllability matrix - <amsmath>X_c=I</amsmath>, but <amsmath>\underline{\sigma}(M_c)</amsmath> is arbitrarily small.
- <amsmath>M_c=I</amsmath>, but <amsmath>\underline{\sigma}(X_c)</amsmath> is arbitrarily small.
- Prove the Schur complement inequality
<amsmath> \left[\begin{array}{ccccccc} A&B\\B^T&C \end{array}\right]\geq 0, C>0 \Longleftrightarrow A-BC^{-1}B^T\geq0, C>0:
</amsmath> - We know that the discrete-time system <amsmath>X[k+1]=Ax[k]</amsmath> is stable (i.e, <amsmath>x[k]\rightarrow 0</amsmath> as <amsmath>k\rightarrow 0</amsmath>) if and only if all eigenvalues of <amsmath>A</amsmath> are inside the unit circle. Derive a necessary and sufficient LMI condition for stability of this system.
- Consider the following optimization problem:
<amsmath> \max_{Q,\alpha}\; \alpha
</amsmath>such that
<amsmath> AQ+QA^T+\alpha Q\le 0, \quad Q>0
</amsmath>Find an analytical expression for the maximum value of <amsmath>\alpha</amsmath> in terms of <amsmath>A</amsmath>.
M_c=\left[\begin{array}{ccccccc} B&AB&A^2B&\cdots&A^{n-1}B \end{array}\right]
</amsmath>cannot be used for the same purpose, since its singular values are unrelated to those of <amsmath>X_c</amsmath>. In particular, construct examples (<amsmath>A\in\mathcal{C}^{2\times 2}, B\in\mathcal{C}^{2\times 1}</amsmath> suffices) such that