Bi/BE 250c Winter 2011: Difference between revisions
No edit summary |
|||
(15 intermediate revisions by 3 users not shown) | |||
Line 40: | Line 40: | ||
| align=right | [BFS] | | align=right | [BFS] | ||
| D. Del Vecchio and R. M. Murray, ''Biomolecular Feedback Systems''. Available online at http://www.cds.caltech.edu/~murray/amwiki/BFS. | | D. Del Vecchio and R. M. Murray, ''Biomolecular Feedback Systems''. Available online at http://www.cds.caltech.edu/~murray/amwiki/BFS. | ||
* Class version (Caltech access only): {{be250c pdf|wi11|caltech/bfs-class-frontmatter_23Jan11.pdf|TOC}}, {{be250c pdf|wi11|caltech/bfs-class-intro_01Jan11.pdf|Ch 1}}, {{be250c pdf|wi11|caltech/bfs-class-coreproc_01Jan11.pdf|Ch 2}}, {{be250c pdf|wi11|caltech/bfs-class- | * Class version (Caltech access only): {{be250c pdf|wi11|caltech/bfs-class-frontmatter_23Jan11.pdf|TOC}}, {{be250c pdf|wi11|caltech/bfs-class-intro_01Jan11.pdf|Ch 1}}, {{be250c pdf|wi11|caltech/bfs-class-coreproc_01Jan11.pdf|Ch 2}}, {{be250c pdf|wi11|caltech/bfs-class-dynamics_25Jan11.pdf|Ch 3}}, {{be250c pdf|wi11|caltech/bfs-class-fbkexamps_25Jan11.pdf|Ch 5}}, {{be250c pdf|wi11|caltech/bfs-backmatter_23Jan11.pdf|Refs}} | ||
|- valign=top | |- valign=top | ||
| align=right | [Klipp] | | align=right | [Klipp] | ||
Line 117: | Line 117: | ||
| <!-- Homework --> | | <!-- Homework --> | ||
[http://www.cds.caltech.edu/~murray/wiki/images/4/41/HW3_final.pdf HW3] | [http://www.cds.caltech.edu/~murray/wiki/images/4/41/HW3_final.pdf HW3] | ||
[http://www.cds.caltech.edu/~murray/courses/bi-be250c/wi11/caltech/hw3Sol.pdf Solutions] | |||
|- valign=top | |- valign=top | ||
| 4 | | 4 | ||
Line 128: | Line 129: | ||
* [http://www.pnas.org/content/97/9/4649.full Robust perfect adaptation in bacterial chemotaxis through integral feedback control], Tau-Mu Yi, Yun Huang, Melvin I. Simon and John Doyle. ''PNAS'', 97(9):4649-4653, 2000. | * [http://www.pnas.org/content/97/9/4649.full Robust perfect adaptation in bacterial chemotaxis through integral feedback control], Tau-Mu Yi, Yun Huang, Melvin I. Simon and John Doyle. ''PNAS'', 97(9):4649-4653, 2000. | ||
| <!-- Homework --> | | <!-- Homework --> | ||
[http://www.cds.caltech.edu/~murray/wiki/images/d/d4/Hw-4.pdf HW4] | |||
[http://www.cds.caltech.edu/~murray/courses/bi-be250c/wi11/caltech/hw-4Sol.pdf Solutions] | |||
|- valign=top | |- valign=top | ||
| 5 | | 5 | ||
Line 141: | Line 144: | ||
* [http://www.nature.com/nature/journal/v440/n7082/full/nature04599.html Stochastic protein expression in individual cells at the single molecule level], Long Cai, Nir Friedman and X. Sunney Xie. ''Nature'', 440:358-362, 2006. | * [http://www.nature.com/nature/journal/v440/n7082/full/nature04599.html Stochastic protein expression in individual cells at the single molecule level], Long Cai, Nir Friedman and X. Sunney Xie. ''Nature'', 440:358-362, 2006. | ||
| <!-- Homework --> | | <!-- Homework --> | ||
[http://www.cds.caltech.edu/~murray/wiki/images/8/8e/Hw-5.pdf HW5] | |||
[http://www.cds.caltech.edu/~murray/courses/bi-be250c/wi11/caltech/hw-5Sol.pdf Solutions] | |||
|- valign=top | |- valign=top | ||
| 6 | | 6 | ||
Line 147: | Line 152: | ||
| | | | ||
* [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920833/ Computational Models of HIV-1 Resistance to Gene Therapy Elucidate Therapy Design Principles], Sharon Aviran, Priya S. Shah, David V. Schaffer, Adam P. Arkin. ''PLoS Comput Biol.", 2010. | * [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920833/ Computational Models of HIV-1 Resistance to Gene Therapy Elucidate Therapy Design Principles], Sharon Aviran, Priya S. Shah, David V. Schaffer, Adam P. Arkin. ''PLoS Comput Biol.", 2010. | ||
| <!-- Homework --> | |||
[http://www.cds.caltech.edu/~murray/wiki/images/3/32/Hw-6.pdf HW6] | |||
|- valign=top | |- valign=top | ||
| 7 | | 7 | ||
| 15 Feb <br> 17 Feb <br><br> MBE | | <s>15 Feb</s> <br> 17 Feb <br><br> MBE | ||
| Dynamic signal coding | | Dynamic signal coding | ||
* PWM | * PWM | ||
Line 173: | Line 178: | ||
* [http://www.pnas.org/content/107/15/6924.short Scaling of morphogen gradients by an expansion-repression integral feedback control], Danny Ben-Zvia and Naama Barkai. ''PNAS'', 107(15):6924-6929, 2010. | * [http://www.pnas.org/content/107/15/6924.short Scaling of morphogen gradients by an expansion-repression integral feedback control], Danny Ben-Zvia and Naama Barkai. ''PNAS'', 107(15):6924-6929, 2010. | ||
| <!-- Homework --> | | <!-- Homework --> | ||
[http://www.cds.caltech.edu/~murray/wiki/images/b/b1/Hw-7.pdf HW7] | |||
[http://www.cds.caltech.edu/~murray/courses/bi-be250c/wi11/caltech/hw-7Sol.pdf Solutions] | |||
|- valign=top | |- valign=top | ||
| 9 | | 9 | ||
| 1 Mar <br> 3 Mar <br><br> | | 1 Mar <br> 3 Mar <br><br> RMM | ||
| Fine grain patterns | | Fine grain patterns | ||
* Lateral inhibition | * Lateral inhibition | ||
* Notch-delta | * Notch-delta | ||
| | | | ||
* [http://www.ncbi.nlm.nih.gov/pubmed/9015458 Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling], Collier et al. Journal of theoretical biology (1996) vol. 183 (4) pp. 429-46. | |||
* [http://www.ncbi.nlm.nih.gov/pubmed/20418862 Cis-interactions between Notch and Delta generate mutually exclusive signalling states], Sprinzak et al. Nature (2010) vol. 465 (7294) pp. 86-90 | |||
| <!-- Homework --> | | <!-- Homework --> | ||
[https://www.cds.caltech.edu/~murray/wiki/images/a/a1/Hw8.pdf HW8 ] | |||
|- valign=top | |- valign=top | ||
| 10 | | 10 | ||
| 8 Mar <br> <br> | | 8 Mar <br> <br> MBE | ||
| Epistasis and modularity | | Epistasis and modularity | ||
* Flux balance analysis and yeast metabolism | * Flux balance analysis and yeast metabolism |
Latest revision as of 04:54, 27 June 2021
Systems Biology | |
Instructors
|
Teaching Assistants
|
Course Description
The class will focus on quantitative studies of cellular and developmental systems in biology. It will examine the architecture of specific genetic circuits controlling microbial behaviors and multicellular development in model organisms. The course will approach most topics from both experimental and theoretical/computational perspectives. Specific topics include chemotaxis, multistability and differentiation, biological oscillations, stochastic effects in circuit operation, as well as higher-level circuit properties such as robustness. The course will also consider the organization of transcriptional and protein-protein interaction networks at the genomic scale.
Announcements
- 20 Jan 2011: HW #3 is now posted
- ODE and MATLAB Tutorial will be held Friday, Jan 7 at 1 pm in Steele 214
- 24 Oct 2010: web page creation
Textbook
The primary text for the course (available via the online bookstore) is
[Alon] | U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, CRC Press, 2006. |
The following additional texts and notes may be useful for some students:
[FBS] | K. J. Astrom and R. M. Murray, Feedback Systems. Available online at http://www.cds.caltech.edu/~murray/amwiki. |
[BFS] | D. Del Vecchio and R. M. Murray, Biomolecular Feedback Systems. Available online at http://www.cds.caltech.edu/~murray/amwiki/BFS. |
[Klipp] | Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, Ralf Herwig, Systems biology: A textbook. Wiley, 2009. |
[Strogatz] | Steven Strogatz, Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering. Westview Press, 2001. |
SAMPLE MATLAB ODE FILES: runfun.m fun.m
Grading
The final grade will be based on biweekly homework sets. The homework will be due in class one week after they are assigned. Late homework will not be accepted without prior permission from the instructor.
The lowest homework score you receive will be dropped in computing your homework average. In addition, if your score on the final is higher than the weighted average of your homework and final, your final will be used to determine your course grade.
Collaboration Policy
Collaboration on homework assignments is encouraged. You may consult outside reference materials, other students, the TA, or the instructor. Use of solutions from previous years in the course is not allowed. All solutions that are handed in should reflect your understanding of the subject matter at the time of writing.
Lecture Schedule
Week | Date | Topic | Reading | Homework |
1 | 4 Jan 6 Jan MBE |
Course overview; gene circuit dynamics
Recitation sections (TAs):
|
|
|
2 | 11 Jan 13 Jan MBE |
Circuit motifs
|
|
|
3 | 18 Jan 20 Jan RMM |
Biological clocks: how to produce oscillations in cells
Background slides on modeling and stability |
|
|
4 | 25 Jan 27 Jan RMM |
Robustness
|
|
|
5 | 1 Feb 3 Feb MBE |
Noise
Probabilistic differentiation (?) |
|
|
6 | 8 Feb 10 Feb TAs |
Population dynamics and Evolution |
|
|
7 | 17 Feb MBE |
Dynamic signal coding
|
|
|
8 | 22 Feb 24 Feb RMM |
Patterning
|
|
|
9 | 1 Mar 3 Mar RMM |
Fine grain patterns
|
|
|
10 | 8 Mar MBE |
Epistasis and modularity
|
|