CDS 212, Homework 5, Fall 2010: Difference between revisions

From Murray Wiki
Jump to navigationJump to search
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{CDS 212 draft HW}}
{{CDS homework
{{CDS homework
  | instructor = J. Doyle
  | instructor = J. Doyle
Line 22: Line 21:
</ol>
</ol>
</li>
</li>
<li>
<li>
Assume <amsmath>(A,B)</amsmath> is controllable.  Show that <amsmath>(F,G)</amsmath> with
Assume <amsmath>(A,B)</amsmath> is controllable.  Show that <amsmath>(F,G)</amsmath> with
Line 36: Line 34:
<li>[PD 4.4]<br>
<li>[PD 4.4]<br>
Controllability gramian vs. controllability matrix. We have seen that the singular values of the controllability gramian <amsmath>X_c</amsmath> can be used to determine "how controllable" the states are. In this problem you will show that the controllability matrix  
Controllability gramian vs. controllability matrix. We have seen that the singular values of the controllability gramian <amsmath>X_c</amsmath> can be used to determine "how controllable" the states are. In this problem you will show that the controllability matrix  
 
</li>
<center><amsmath>
<center><amsmath>
M_c=\left[\begin{array}{ccccccc} B&AB&A^2B&\cdots&A^{n-1}B \end{array}\right]
M_c=\left[\begin{array}{ccccccc} B&AB&A^2B&\cdots&A^{n-1}B \end{array}\right]
Line 46: Line 44:
</ol>
</ol>
</li>
</li>
<li> Prove the Schur complement inequality
<li> Prove the Schur complement inequality
<center><amsmath>
<center><amsmath>
\left[\begin{array}{ccccccc} A&B\\B^T&C \end{array}\right]\geq 0, C>0 \Longleftrightarrow A-BC^{-1}B^T\geq0, C>0:  
\left[\begin{array}{ccccccc} A&B\\B^T&C \end{array}\right]> 0 \Longleftrightarrow A-BC^{-1}B^T>0,\quad C>0
</amsmath></center>
</li>
<li>We know that the discrete-time system <amsmath>x[k+1]=Ax[k]</amsmath> is stable (i.e, <amsmath>x[k]\rightarrow 0</amsmath> as <amsmath>k\rightarrow 0</amsmath>) if and only if all eigenvalues of <amsmath>A</amsmath> are inside the unit circle. Derive a necessary and sufficient LMI condition for stability of this system.
</li>
<li>Consider the following optimization problem:
<center><amsmath>
\max_{Q,\alpha}\; \alpha
</amsmath></center>
subject to
<center><amsmath>
AQ+QA^T+\alpha Q< 0, \quad Q>0
</amsmath></center>
</amsmath></center>
Find an analytical expression (in terms of <amsmath>A</amsmath>) for the maximum value of <amsmath>\alpha</amsmath>.</li>

Latest revision as of 22:07, 26 October 2010

J. Doyle Issued: 26 Oct 2010
CDS 212, Fall 2010 Due: 4 Nov 2010

Reading

  • [PD], Chapter 4

Problems

  1. [PD 4.1]
    Suppose <amsmath>A, X</amsmath> and <amsmath>C</amsmath> satisfy <amsmath>A^*X+XA+C^*C=0.</amsmath> Show that any two of the following implies the third:
    1. <amsmath>A</amsmath> Hurwitz.
    2. <amsmath>(C,A)</amsmath> observable.
    3. <amsmath>X>0</amsmath>
  2. Assume <amsmath>(A,B)</amsmath> is controllable. Show that <amsmath>(F,G)</amsmath> with
    <amsmath>

    F=\left[\begin{array}{ccc} A&0\\C&0 \end{array}\right], G=\left[\begin{array}{ccc} B\\0 \end{array}\right],

    </amsmath>

    is controllable if and only if

    <amsmath>

    \left[\begin{array}{ccc} A&B\\C&0 \end{array}\right]

    </amsmath>

    is a full row rank matrix.

  3. [PD 4.4]
    Controllability gramian vs. controllability matrix. We have seen that the singular values of the controllability gramian <amsmath>X_c</amsmath> can be used to determine "how controllable" the states are. In this problem you will show that the controllability matrix
  4. <amsmath>

    M_c=\left[\begin{array}{ccccccc} B&AB&A^2B&\cdots&A^{n-1}B \end{array}\right]

    </amsmath>

    cannot be used for the same purpose, since its singular values are unrelated to those of <amsmath>X_c</amsmath>. In particular, construct examples (<amsmath>A\in\mathcal{C}^{2\times 2}, B\in\mathcal{C}^{2\times 1}</amsmath> suffices) such that

    1. <amsmath>X_c=I</amsmath>, but <amsmath>\underline{\sigma}(M_c)</amsmath> is arbitrarily small.
    2. <amsmath>M_c=I</amsmath>, but <amsmath>\underline{\sigma}(X_c)</amsmath> is arbitrarily small.
  5. Prove the Schur complement inequality
    <amsmath>

    \left[\begin{array}{ccccccc} A&B\\B^T&C \end{array}\right]> 0 \Longleftrightarrow A-BC^{-1}B^T>0,\quad C>0

    </amsmath>
  6. We know that the discrete-time system <amsmath>x[k+1]=Ax[k]</amsmath> is stable (i.e, <amsmath>x[k]\rightarrow 0</amsmath> as <amsmath>k\rightarrow 0</amsmath>) if and only if all eigenvalues of <amsmath>A</amsmath> are inside the unit circle. Derive a necessary and sufficient LMI condition for stability of this system.
  7. Consider the following optimization problem:
    <amsmath>

    \max_{Q,\alpha}\; \alpha

    </amsmath>

    subject to

    <amsmath>

    AQ+QA^T+\alpha Q< 0, \quad Q>0

    </amsmath>
    Find an analytical expression (in terms of <amsmath>A</amsmath>) for the maximum value of <amsmath>\alpha</amsmath>.