CDS 212, Homework 1, Fall 2010: Difference between revisions
From Murray Wiki
				
				
				Jump to navigationJump to search
				
				
|  (Created page with '{{CDS 212 draft HW}}  === Reading ===  === Problems ===') | No edit summary | ||
| (13 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| {{CDS 212  | {{CDS homework | ||
|  | instructor = J. Doyle | |||
|  | course = CDS 212 | |||
|  | semester = Fall 2010 | |||
|  | title = Problem Set #1 | |||
|  | issued = 28 Sep 2010 | |||
|  | due = 7 Oct 2010 | |||
| }} | |||
| === Reading === | === Reading === | ||
| * {{DFT}}, Chapters 1 and 2 | |||
| * Dullerud and Paganini, Ch 3 | |||
| === Problems === | === Problems === | ||
| <ol> | |||
| <li>[DFT 2.1, page 28<br> | |||
| Suppose that <amsmath>u(t)</amsmath> is a continuous signal whose derivative <amsmath>\dot | |||
| u(t)</amsmath> is also continuous.  Which of the following quantities qualifies | |||
| as a norm for <amsmath>u</amsmath>: | |||
| <ol type="a"> | |||
| <li> <amsmath>\textstyle  \sup_t |\dot u(t)|</amsmath></li> | |||
| <li> <amsmath>\textstyle  |u(0)| + \sup_t |\dot u(t)|</amsmath> </li> | |||
| <li> <amsmath>\textstyle  \max \{ \sup_t |u(t)|,\, \sup_t |\dot u(t)| \}</amsmath> </li> | |||
| <li> <amsmath>\textstyle  \sup_t |u(t)| + \sup_t |\dot u(t)|</amsmath> </li> | |||
| </ol> | |||
| Make sure to give a thorough answer (not just yes or no). | |||
| </li> | |||
| <li> [DFT 2.4, page 29] <br> | |||
| Let <amsmath>D</amsmath> be a pure time delay of <amsmath>\tau</amsmath> seconds with transfer function | |||
| <amsmath> \widehat D(s) = e^{-s \tau} </amsmath>. A norm <amsmath>\|\cdot\|</amsmath> on transfer functions is ''time-delay invariant'' if for | |||
| every bounded transfer function <amsmath>\widehat G</amsmath> and every <amsmath>\tau > 0</amsmath> we have | |||
| <center><amsmath> | |||
|  \| \widehat D \widehat G \| = \| \widehat G \| | |||
| </amsmath></center> | |||
| Determine if the 2-norm and <amsmath>\infty</amsmath>-norm are time-delay invariant. | |||
| </li> | |||
| <li> [DFT 2.5, page 30] <br> | |||
| Compute the 1-norm of the impluse response corresponding to the | |||
| transfer function <amsmath> \frac{1}{\tau s + 1}, \quad \tau > 0 </amsmath>.  | |||
| </li> | |||
| <li> [DFT 2.7, page 30] <br>  | |||
| Derive the <amsmath>\infty</amsmath>-norm to <amsmath>\infty</amsmath>-norm system gain for a stable, | |||
| proper plant <amsmath>\widehat G</amsmath>.  (Hint: write <amsmath>\widehat G = c + \widehat G_1</amsmath> where <amsmath>c</amsmath> is a constant | |||
| and <amsmath>\widehat G_1</amsmath> is strictly proper.) | |||
| </li> | |||
| <li> [DFT 2.8, page 30] <br>  | |||
| Let <amsmath>\widehat G</amsmath> be a stable, proper plant (but not necessarily strictly proper). | |||
| <ol type="a"> | |||
| <li> Show that the <amsmath>\infty</amsmath>-norm of the output <amsmath>y</amsmath> given an input | |||
|   <amsmath>u(t) = \sin(\omega t)</amsmath> is <amsmath>|\widehat G(jw)|</amsmath>.</li> | |||
| <li>  Show that the 2-norm to 2-norm system gain for <amsmath>\widehat G</amsmath> is <amsmath>\| | |||
|   \widehat G \|_\infty</amsmath> (just as in the strictly proper case).</li> | |||
| </ol> | |||
| </li> | |||
| <li>[DFT 2.11, page 30] <br> | |||
| Consider a system with transfer function | |||
| <amsmath>\widehat G(s) = \frac{s+2}{4s + 1}</amsmath> | |||
| and input <amsmath>u</amsmath> and output <amsmath>y</amsmath>.  Compute | |||
| <center><amsmath> | |||
|   \| G \|_1 = \sup_{\|u\|_\infty = 1} \| y \|_\infty | |||
| </amsmath></center> | |||
| and find an input which achieves the supremum. | |||
| </li> | |||
| <li> [DFT 2.12, page 30] <br> | |||
| For a linear system with input <amsmath>u</amsmath> and output <amsmath>y</amsmath>, prove that | |||
| <center><amsmath> | |||
|   \sup_{\|u\| \leq 1} \| y \| = | |||
|     \sup_{\|u\| = 1} \| y \| | |||
| </amsmath></center> | |||
| where <amsmath>\|\cdot\|</amsmath> is any norm on signals. | |||
| </li> | |||
Latest revision as of 17:42, 28 September 2010
| J. Doyle | Issued: 28 Sep 2010 | 
| CDS 212, Fall 2010 | Due: 7 Oct 2010 | 
Reading
- DFT, Chapters 1 and 2
- Dullerud and Paganini, Ch 3
Problems
- [DFT 2.1, page 28
 Suppose that <amsmath>u(t)</amsmath> is a continuous signal whose derivative <amsmath>\dot u(t)</amsmath> is also continuous. Which of the following quantities qualifies as a norm for <amsmath>u</amsmath>:- <amsmath>\textstyle \sup_t |\dot u(t)|</amsmath>
- <amsmath>\textstyle |u(0)| + \sup_t |\dot u(t)|</amsmath>
- <amsmath>\textstyle \max \{ \sup_t |u(t)|,\, \sup_t |\dot u(t)| \}</amsmath>
- <amsmath>\textstyle \sup_t |u(t)| + \sup_t |\dot u(t)|</amsmath>
 Make sure to give a thorough answer (not just yes or no). 
-  [DFT 2.4, page 29] 
 Let <amsmath>D</amsmath> be a pure time delay of <amsmath>\tau</amsmath> seconds with transfer function <amsmath> \widehat D(s) = e^{-s \tau} </amsmath>. A norm <amsmath>\|\cdot\|</amsmath> on transfer functions is time-delay invariant if for every bounded transfer function <amsmath>\widehat G</amsmath> and every <amsmath>\tau > 0</amsmath> we have<amsmath> \| \widehat D \widehat G \| = \| \widehat G \| </amsmath>Determine if the 2-norm and <amsmath>\infty</amsmath>-norm are time-delay invariant. 
-  [DFT 2.5, page 30] 
 Compute the 1-norm of the impluse response corresponding to the transfer function <amsmath> \frac{1}{\tau s + 1}, \quad \tau > 0 </amsmath>.
-  [DFT 2.7, page 30] 
 Derive the <amsmath>\infty</amsmath>-norm to <amsmath>\infty</amsmath>-norm system gain for a stable, proper plant <amsmath>\widehat G</amsmath>. (Hint: write <amsmath>\widehat G = c + \widehat G_1</amsmath> where <amsmath>c</amsmath> is a constant and <amsmath>\widehat G_1</amsmath> is strictly proper.)
-  [DFT 2.8, page 30] 
 Let <amsmath>\widehat G</amsmath> be a stable, proper plant (but not necessarily strictly proper).- Show that the <amsmath>\infty</amsmath>-norm of the output <amsmath>y</amsmath> given an input <amsmath>u(t) = \sin(\omega t)</amsmath> is <amsmath>|\widehat G(jw)|</amsmath>.
- Show that the 2-norm to 2-norm system gain for <amsmath>\widehat G</amsmath> is <amsmath>\| \widehat G \|_\infty</amsmath> (just as in the strictly proper case).
 
- [DFT 2.11, page 30] 
 Consider a system with transfer function <amsmath>\widehat G(s) = \frac{s+2}{4s + 1}</amsmath> and input <amsmath>u</amsmath> and output <amsmath>y</amsmath>. Compute<amsmath> \| G \|_1 = \sup_{\|u\|_\infty = 1} \| y \|_\infty</amsmath>and find an input which achieves the supremum. 
-  [DFT 2.12, page 30] 
 For a linear system with input <amsmath>u</amsmath> and output <amsmath>y</amsmath>, prove that<amsmath> \sup_{\|u\| \leq 1} \| y \| = \sup_{\|u\| = 1} \| y \|</amsmath>where <amsmath>\|\cdot\|</amsmath> is any norm on signals. 

