CDS 140b Spring 2014 Homework 3: Difference between revisions
From Murray Wiki
				
				
				Jump to navigationJump to search
				
				
| No edit summary | mNo edit summary | ||
| (2 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| {{CDS homework | {{CDS homework | ||
|   | instructor = R. Murray, D. MacMartin |   | instructor = R. Murray, D. MacMartin | ||
| Line 16: | Line 15: | ||
| <li>'''Khalil, Problem 5.13'''</li> | <li>'''Khalil, Problem 5.13'''</li> | ||
| <li>'''Khalil, Problem 5.16''' | <li>'''Khalil, Problem 5.16''' | ||
| * Hint: Try $$V(x) = \int_0^{x_1} \sigma(y)  | * Hint: Try using the Lyapunov function $$V(x) = \int_0^{x_1} \sigma(y) dy + \frac{1}{2} (x_1^2 + x_2^2)$$. | ||
| </li> | </li> | ||
| <li>'''Khalil, Problem 5.23'''</li> | <li>'''Khalil, Problem 5.23'''</li> | ||
| </ol> | </ol> | ||
Latest revision as of 15:18, 27 April 2014
| R. Murray, D. MacMartin | Issued: 21 Apr 2014 (Wed) | 
| CDS 140b, Spring 2014 | Due: 1 May 2014 (Thu) | 
__MATHJAX__
- Khalil, Problem 4.35
- Khalil, Problem 4.39
- Khalil, Problem 4.57
- Khalil, Problem 5.1
- Khalil, Problem 5.13
- Khalil, Problem 5.16
- Hint: Try using the Lyapunov function $$V(x) = \int_0^{x_1} \sigma(y) dy + \frac{1}{2} (x_1^2 + x_2^2)$$.
 
- Khalil, Problem 5.23

