CDS 212, Homework 1, Fall 2010: Difference between revisions
From Murray Wiki
Jump to navigationJump to search
Line 31: | Line 31: | ||
<li> DFT 2.4, page 29] <br> | <li> DFT 2.4, page 29] <br> | ||
Let <amsmath>D</amsmath> be a pure time delay of <amsmath>\tau</amsmath> seconds with transfer function | Let <amsmath>D</amsmath> be a pure time delay of <amsmath>\tau</amsmath> seconds with transfer function | ||
<amsmath> \widehat D(s) = e^{-s \tau} </amsmath>. A norm <amsmath>\|\cdot\|</amsmath> on transfer functions is | <amsmath> \widehat D(s) = e^{-s \tau} </amsmath>. A norm <amsmath>\|\cdot\|</amsmath> on transfer functions is ''time-delay invariant'' if for | ||
every bounded transfer function <amsmath>\widehat G</amsmath> and every <amsmath>\tau > 0</amsmath> we have | every bounded transfer function <amsmath>\widehat G</amsmath> and every <amsmath>\tau > 0</amsmath> we have | ||
<ol type=""> | <ol type=""> | ||
Line 64: | Line 64: | ||
<amsmath>\widehat G(s) = \frac{s+2}{4s + 1}</amsmath> | <amsmath>\widehat G(s) = \frac{s+2}{4s + 1}</amsmath> | ||
and input <amsmath>u</amsmath> and output <amsmath>y</amsmath>. Compute | and input <amsmath>u</amsmath> and output <amsmath>y</amsmath>. Compute | ||
< | <center><amsmath> | ||
<amsmath>\| G \|_1 = \sup_{\|u\|_\infty = 1} \| y \|_\infty</amsmath> | \| G \|_1 = \sup_{\|u\|_\infty = 1} \| y \|_\infty | ||
</ | </amsmath></center> | ||
and find an input which achieves the supremum. | and find an input which achieves the supremum. | ||
</li> | </li> | ||
Line 72: | Line 72: | ||
<li> [DFT 2.12, page 30] <br> | <li> [DFT 2.12, page 30] <br> | ||
For a linear system with input <amsmath>u</amsmath> and output <amsmath>y</amsmath>, prove that | For a linear system with input <amsmath>u</amsmath> and output <amsmath>y</amsmath>, prove that | ||
< | <center><amsmath> | ||
\sup_{\|u\| \leq 1} \| y \| = | |||
\sup_{\|u\| = 1} \| y \|</amsmath> | \sup_{\|u\| = 1} \| y \| | ||
</ | </amsmath></center> | ||
where <amsmath>\|\cdot\|</amsmath> is any norm on signals. | where <amsmath>\|\cdot\|</amsmath> is any norm on signals. | ||
</li> | </li> | ||
<li>Consider a second order mechanical system with transfer function | <li>Consider a second order mechanical system with transfer function | ||
< | <center><amsmath> | ||
<amsmath> | \widehat G(s) = \frac{1}{s^2 + 2 \omega_n \zeta s + \omega_n^2} | ||
</ | </amsmath></center> | ||
(<amsmath>\omega_n</amsmath> is the natural frequence of the system and <amsmath>\zeta</amsmath> is the | (<amsmath>\omega_n</amsmath> is the natural frequence of the system and <amsmath>\zeta</amsmath> is the | ||
damping ratio). Setting <amsmath>\omega_n = 1</amsmath>, write a short MATLAB | damping ratio). Setting <amsmath>\omega_n = 1</amsmath>, write a short MATLAB |
Revision as of 18:58, 18 September 2010
- REDIRECT HW draft
J. Doyle | Issued: 28 Sep 2010 |
CDS 112, Fall 2010 | Due: 7 Oct 2010 |
Reading
- DFT, Chapters 1 and 2
- Dullerud and Paganini, Ch 3
Problems
- DFT 2.1, page 28
Suppose that <amsmath>u(t)</amsmath> is a continuous signal whose derivative <amsmath>\dot u(t)</amsmath> is also continuous. Which of the following quantities qualifies as a norm for <amsmath>u</amsmath>:- <amsmath>\textstyle \sup_t |\dot u(t)|</amsmath>
- <amsmath>\textstyle |u(0)| + \sup_t |\dot u(t)|</amsmath>
- <amsmath>\textstyle \max \{ \sup_t |u(t)|,\, \sup_t |\dot u(t)| \}</amsmath>
- <amsmath>\textstyle \sup_t |u(t)| + \sup_t |\dot u(t)|</amsmath>
Make sure to give a thorough answer (not just yes or no).
- DFT 2.4, page 29]
Let <amsmath>D</amsmath> be a pure time delay of <amsmath>\tau</amsmath> seconds with transfer function <amsmath> \widehat D(s) = e^{-s \tau} </amsmath>. A norm <amsmath>\|\cdot\|</amsmath> on transfer functions is time-delay invariant if for every bounded transfer function <amsmath>\widehat G</amsmath> and every <amsmath>\tau > 0</amsmath> we have-
<amsmath>\textstyle \| \widehat D \widehat G \| = \| \widehat G \| </amsmath>
Determine if the 2-norm and <amsmath>\infty</amsmath>-norm are time-delay invariant.
- [DFT 2.5, page 30]
Compute the 1-norm of the impluse response corresponding to the transfer function <amsmath> \frac{1}{\tau s + 1}, \quad \tau > 0 </amsmath>. - DFT 2.7, page 30]
Derive the <amsmath>\infty</amsmath>-norm to <amsmath>\infty</amsmath>-norm system gain for a stable, proper plant <amsmath>\widehat G</amsmath>. (Hint: write <amsmath>\widehat G = c + \widehat G_1</amsmath> where <amsmath>c</amsmath> is a constant and <amsmath>\widehat G_1</amsmath> is strictly proper.) - [DFT 2.8, page 30]
Let <amsmath>\widehat G</amsmath> be a stable, proper plant (but not necessarily strictly proper).- Show that the <amsmath>\infty</amsmath>-norm of the output <amsmath>y</amsmath> given an input <amsmath>u(t) = \sin(\omega t)</amsmath> is <amsmath>|\widehat G(jw)|</amsmath>.
- Show that the 2-norm to 2-norm system gain for <amsmath>\widehat G</amsmath> is <amsmath>\| \widehat G \|_\infty</amsmath> (just as in the strictly proper case).
- [DFT 2.11, page 30]
Consider a system with transfer function <amsmath>\widehat G(s) = \frac{s+2}{4s + 1}</amsmath> and input <amsmath>u</amsmath> and output <amsmath>y</amsmath>. Compute<amsmath> \| G \|_1 = \sup_{\|u\|_\infty = 1} \| y \|_\infty
</amsmath>and find an input which achieves the supremum.
- [DFT 2.12, page 30]
For a linear system with input <amsmath>u</amsmath> and output <amsmath>y</amsmath>, prove that<amsmath> \sup_{\|u\| \leq 1} \| y \| = \sup_{\|u\| = 1} \| y \|
</amsmath>where <amsmath>\|\cdot\|</amsmath> is any norm on signals.
- Consider a second order mechanical system with transfer function
<amsmath> \widehat G(s) = \frac{1}{s^2 + 2 \omega_n \zeta s + \omega_n^2}
</amsmath>(<amsmath>\omega_n</amsmath> is the natural frequence of the system and <amsmath>\zeta</amsmath> is the damping ratio). Setting <amsmath>\omega_n = 1</amsmath>, write a short MATLAB program to generate a plot of the <amsmath>\infty</amsmath>-norm as a function of the damping ratio <amsmath>\zeta > 0</amsmath>.