]>
2021-10-26T06:44:12+00:00
Finite-Horizon Optimal Control and Stabilization of Time-Scalable Systems
0
en
In this paper, we consider the optimal control of time-scalable systems.
The time-scaling property is shown to convert the PDE associated
with the Hamilton-Jacobi-Bellman (HJB) equation to a purely spatial PDE.
Solution of this PDE yields the value function at a fixed time, and that solutio
n can be
scaled to find the value function at any point in time. Furthermore, in certain
cases the
unscaled control law stabilizes the system, and the unscaled value function acts
as a
Lyapunov function for that system. For the example of the
nonholonomic integrator, this PDE is solved, and the
resulting optimal trajectories coincide with the known solution to that problem.
Alex Fax and Richard Murray
2000a
2000 Conference on Decision and Control
fm00-cdc
Conference
Submission
2016-05-15T06:19:30Z
2457523.7635417
Finite-Horizon Optimal Control and Stabilization of Time-Scalable Systems
Title
102
en
Title