]>
2022-05-21T00:48:31+00:00
A stochastic framework for the design of transient and steady state behavior of biochemical reaction networks
0
en
Stochasticity plays an essential role in biochemical systems. Stochastic behaviors of bimodality, excitability, and fluctuations have been observed in biochemical reaction networks at low molecular numbers. Stochastic dynamics can be captured by modeling the system using a forward Kolmogorov equation known in the biochemical literature as the chemical master equation. The chemical master equation describes the time evolution of the probability distributions of the molecule species. We develop a stochastic framework for the design of these time evolving probability distributions that includes specifying their uni-/multi-modality, their first moments, and their rate of convergence to the stationary distribution. By solving the corresponding optimizations programs, we determine the reaction rates of the biochemical systems that satisfy our design specifications. We then apply the design framework to examples of biochemical reaction networks to illustrate its strengths and limitations.
Ania A. Baetica, Ye Yuan, Jorge Goncalves and Richard M. Murray
2015d
2015 Conference on Decision and Control (CDC)
bygm15-cdc
Conference Paper
2019-09-03T16:32:03Z
2458730.1889236
A stochastic framework for the design of transient and steady state behavior of biochemical reaction networks
Title
102
en
Title