Lecture 1: Introduction to
Networked Control Systems

Richard M. Murray
Caltech Control and Dynamical Systems
16 March 2009

Goals:

» Describe current and emerging applications of networked control systems
* Summarize key features and recent advances in NCS
* Provide an overview of the course contents

Reading:
* Networked Control Systems, 2008 (preprint). Chapter 1 Available on
« Control in an Information Rich World, Sections 1, 3.2 and 3.3 course wiki page

http://www.cds.caltech.edu/~murray/wiki/ncs-sp09
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Applications
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Team Caltech: Alice

Team Caltech
e Started in 2003, for DGC04

® 2004-05: 50 Caltech undergraduates,
1 MS student, 3 TAs, 2 faculty

Alice
® 2005 Ford E-350 Van
e 5 cameras: 2 stereo pairs, roadfinding
e 5 LADARSs: long, med*2, short, bumper
e 2 GPS units + 1 IMU (LN 200)
Computing (2005)
e 6 Dell PowerEdge Servers (P4, 3GHz)
e 1 IBM Quad Core AMDG64 (fast!) =
® 1 Gb/s switched ethernet

Short range
stereo

Long range
stereo

Distance (m)

Software
® 15 programs with ~100 exec threads -
e 100,000+ lines of executable code @

LADAR (4)
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2007 DARPA Grand Challenge (Urban Challenge)

Autonomous Urban Driving
* 60 mile course, less than 6 hours
* City streets, obeying traffic rules
e Follow cars, maintain safe distance
e Pull around stopped, moving vehicles
 Stop and go through intersections
» Navigate in parking lots (w/ other cars)
¢ U turns, traffic merges, replanning
* Prizes: $2M, $1M, $500K

* Note: The southern 6
R waypoints in the Parking
M e Lot (Zone 14) are
{©) checkpoint ID Checkpoints ()= (@)
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How did we come up with this? l Estimator Vehicle
1

e Step 1: requirements analysis - what does Alice need to

be able to do? Based on specs given by DARPA et Navigation - - - - - - - '
e Step 2: functional decomposition - what are the basic Properties
elements required to function? Designer choice * Highly modular
e Step 3: scenario generation and iteration - can it do what * Rapidly adaptable
we want? Some simulation; mainly paper-based « Constantly viable
® Step 4: interface specs (50% inherited = software reuse) « Robust 2??
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Sensing System i

Sensing hardware
® 6 horizontal LADAR (overlapping)
e 1 pushbroom LADAR; 1 sweeping (PTU)
e 3 stereo pairs (color; 640x480 @ ~10 Hz)
® 2 road finding cameras (B&W)
e 2 RADAR units (PTU mounted)
e 10 blade cPCI high speed computing
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Sensor Processing

Mapper
Feeders > Perceptors >Trackers
Q Sensed
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Obstacle @ ,
A Map Query Function Examples:
- Get_Obstacles(my_lane)
. - Get_Obstacles(other_lane)
RNDF Prior - Get_Stopline(my_lane)
- Get Laneline(mv lane)
Feeders Perceptors Mapper
¢ Interface to raw e Detect and track e Maintain locations of
sensor data features needed for current objectives
driving
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Mission and Traffic Planners

Mission Planner performs high level decision-making
e Graph search for best routes; replan if routes are blocked

Traffic Planner handles rules of the road
e Control execution of path following & planning (multi-point turns)

e Encode traffic rules - when can we change lanes, proceed thru intersection, etc

e Coordinate vehicle avoidance strategies (passive, active avoidance)

2. cplan for executing turn
(initiated after stop + car check)

travel direction

3. cplan for parking zone

NG

+

¥
—
) J
1. cplan leading to intersection
(stope at end)
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Logic Planner

4’ new cplan after
detecting roadblock

roadblock

N

4. initial cplan to checkpoint

ROAD REGION |

passing finished or obstacle disappeared

no collision-free path exjsts
and there is only o€

OFF-ROAD
mode

andthere is more than one lane

FAILED PAUSED

I passing finished or obstacle disappeared
| no collision-free path exists no collision-free path exists
DR,NP,S
I collision-free path is found collision-free path is found
no collision-flee path exists
collision-free pa and the numiper of times Alice
| no collision-free path exists and the has switched|to the DR.P.R
| number of times Alice has switched state near th¢ current position
to the DR,P,R state near the current is less than shme threshold
position is less than some threshold
| s DRPR,S
backup finished — collision-free path is found J
| o failed and the no collision-frg
; no collision-free
lision-f number of times Alice ath exists and
| no pollsonire has switched to BACKUP R
path exists is less than some threshold Gne lane
I han one lane
no collision-free path exists and the number
| of times Alice has switched to the DR,P,R
state near the current position exceeds som
I BACKUP threshold and there is more than one lane
I I collision-f path is found 1 1"no collision-free path exists and the number of times Alice has switched to the DR,P,R
state near the current position exceeds some threshold and there is only one lane
I colligion-free path
withf DR,A is found 0 collision-free path exists
| L no collision-free path exists
DRB |
I collision-free path is found
[ B —_ —_ —_ —_— e —_— —_— —_— —_— —_ =
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Trajectory Generation in Real-Time

+T
Key obstacle: constraints Uy oar) = T minf L(x(@),u(t))dt+V(x(t+T))
’ t
e Optimization routines
slow down significantly Xp=x(t) x,=x,(t+T)
when constraints are added
Technique #1: flatness (Fliess et al) Technique #2: NURBs (Flores/Milam)
e Exploit structure of the dynamics to ¢ |dea: choose basis functions so that
replace differential constraints constraints (on flat vars) are
z=h(z,,..., q(p)) automatically satisfied
J
— ; () R'(t)P; Ri( &
r=x(2,2,...,%
u=2z(2,%,...,27) ® z(t) e convex hull of control points P,
® Trajectory generation — linear eqs
z(to) — (2(0), 2(0), ..., 2P(0))
w(to) — (2(0),2(0),...,2(7(0)) .
_ i Z(to)
Z—Zalgzﬁ (t) Mo = L’(tf)]
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Architecture, July 2007

“““““““““““““““““““““ e Applanix INS (dGPS, IMU, DMI)
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2007 National Qualifying Event

Merging test
® 10-12 cars circling past inters’n
e Count “perfect runs” in 30 min
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2007 National Qualifying Event

Driving test
® 2 mile run - roads, parking
lots, obstacles on road

e First run - safety buffers
too large => slow progress

e Second run - completed
course in 22 minutes;
minor errors

e 1 of ~8 vehicles completed
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D’Andrea & M
ACC 2003

@ Example: RoboFlag (D'Andrea, Cornell)

Arbiter

Humans
(2-3 per team)

computers
for each vehicle

| Yoton g ) O, Robot version of “Capture the Flag”

e Teams try to capture flag of opposing
team without getting tagged

e Mixed initiative system: two humans
controlling up to 6-10 robots

’

O e Limited BW comms + limited sensing
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RoboFlag Demonstration

Red Team view.

Obstacle

- Tagged
Flag { robot (blue)
carrier

>

Integration of computer science, communications, and control
e Time scales don't allow standard abstractions to isolate disciplines
e Example: how do we maintain a consistent, shared view of the field?

Higher levels of decision making and mixed initiative systems
e Where do we put the humans in the loop? what do we present to them?
e Example: predict “plays” by the other team, predict next step, and react
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RoboFlag S

ubproblems

°

NEUTRAL ORSTACLE

BLUE SCORING BALLS
.

1.Formation control

* Maintain positions to guard
defense zone

2.Distributed estimation

* Fuse sensor data to
determine opponent
location

3.Distributed consensus

* Assign individuals to tag
incoming vehicles

Goal: develop systematic techniques fo
[ J
e Distributed estimation and sensor fusio
e Distributed receding horizon control
e Packet-based estimation and control
[ J
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Control Problems a

r solving subproblems

Cooperative control and graph Laplacians

n Implement and test
as part of annual

RoboFlag competition

Verifiable protocols for consensus and control
Richard M. Murray, Caltech CDS

nd Design Patterns
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'

Control Challenges

e How should we distribute computing load
burden between computers?

e How should we handle communication
limits and dropped packets?

o How do multiple computers cooperate in
a shared task (with common view)?

e What types of protocols should we use
for transmitting data between nodes?
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Design Patterns

« Local temporal autonomy - allow modules
to operate with data losses

« State estimation - estimate future states if
current data are not available

« Control buffers - buffer commands to
tolerate latency and lost data

» Time servers - time stamp data and track
clock skew
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