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Chapter 4

Optimal Control in Lossy Networks

4.1 Introduction

Today, an increasingly number of applications demand remote control of plants over un-

reliable networks. The recent development of sensor web technology [68] enables the development

of wireless sensor networks that can be immediately used for estimation and control of dynami-

cal systems. In these systems issues of communication delay, data loss, and time-synchronization

play critical roles. Communication and control become very tightly coupled and these two issues

cannot be addressed independently in design and analysis of such systems. Consider, for exam-

ple, the problem of navigating a fleet of vehicles using observations from a sensor web. Wireless

nodes collect their sensor measurements and send them to a computing unit. This, in turn, generates

state estimate for each vehicle and computes inputs, that are then delivered, using the same wireless

channel, to the actuators onboard the vehicles. Due to the unreliability of the wireless channel,

both observations underlying the estimate and control packets sent to each vehicle can be lost or

delayed while travelling across the network. What is the amount of data loss that the control loop

can tolerate to reliably perform the navigation task? Can communication protocols be designed to

satisfy this constraint? The goal of this paper is to provide the first steps in answering such ques-

tions by examining the basic system-theoretic implications of using unreliable networks for control.

This requires a generalization of classical control techniques that explicitly takes into account the

stochastic nature of the communication channel.

Packet networks communication channels typically use one of two kinds of protocols:

Transmission Control (TCP) or User Datagram (UDP). In the first case there is acknowledgement

of received packets, while in the second case no confirmation feedback is provided on the commu-
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Figure 4.1: Overview of the system. We study the statistical convergence properties of the expected
state covariance of the discrete time LQG control system, where both the observation and the control
signal, transmitted over an unreliable communication channel, can be lost at each time step with
probability 1− γ̄ and 1− ν̄ respectively.

nication link. In this paper, we study the effect of data losses due to the unreliability of the network

links under these two protocols. We generalize the Linear Quadratic Gaussian (LQG) optimal con-

trol problem to these problems by modeling the arrival of both observations and control packets as

random processes whose parameters are related to the characteristics of the communication chan-

nel. Accordingly, two independent Bernoulli processes are considered, with parameters γ and ν, that

govern packet losses between the sensors and the estimation-control unit, and between the latter and

the actuation points (see Figure 4.1).

In our analyses, the distinction between the two classes of protocols resides exclusively in

the availability of packet acknowledgements. Adopting the framework proposed by Imer et al. [32],

we will refer therefore to TCP-like protocols if packet acknowledgements are available and to UDP-

like protocols otherwise. We summarize our contributions as follows. For the TCP-like case the

classic separation principle holds, and consequently the controller and estimator can be designed

independently. Moreover, the optimal controller is a linear function of the state. In sharp contrast,

for the UDP-like case, a counter-example demonstrates that the optimal controller is in general non-

linear. In the special case when the state is fully observable and the observation noise is zero the

optimal controller is indeed linear. We explicitly note that a similar, but slightly less general special

case was previously analyzed in [32], where both observation and process noise are assumed to be
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zero and the input coefficient matrix to be invertible.

Our final set of results relate to convergence in the infinite horizon. Here, our previous

results on estimation with missing observation packets [69] [45] are extended to the control case.

We show the existence of a critical domain of values for the parameters of the Bernoulli arrival

processes, ν and γ, outside which a transition to instability occurs and the optimal controller fails

to stabilize the system. In particular, we show that under TCP-like protocols the critical arrival

probabilities for the control and observation channel are independent of each other. This is another

consequence of the fact that the separation principle holds for these protocols. In contrast, under

UDP-like protocols the critical arrival probabilities for the control and observation channels are

coupled. Here, the stability domain and performance of the optimal controller degrade considerably

as compared with TCP-like protocols as shown in Figure 4.2.
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Figure 4.2: Region of stability for UDP-like and TCP-like optimal control relative to measurement
packet arrival probability γ, and the control packet arrival probability ν.

Finally, we wish to mention some closely related research. Study of stability of dynamical

systems where components are connected asynchronously via communication channels has received

considerable attention in the past few years and our contribution can be put in the context of the

previous literature. In [24] and [78], the authors proposed to place an estimator, i.e. a Kalman filter,

at the sensor side of the link without assuming any statistical model for the data loss process. In [71],
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Smith et al. considered a suboptimal but computationally efficient estimator that can be applied

when the arrival process is modeled as a Markov chain, which is more general than a Bernoulli

process. Other work includes Nilsson et al. [57][59] who present the LQG optimal regulator with

bounded delays between sensors and controller, and between the controller and the actuator. In

this work, bounds for the critical probability values are not provided. Additionally, there is no

analytic solution for the optimal controller. The case where dropped measurements are replaced by

zeros is considered by Hadjicostis and Touri [27], but only in the scalar case. Other approaches

include using the last received sample for control [59], or designing a dropout compensator [43],

which combines estimation and control in a single process. However, the former approach does

not consider optimal control and the latter is limited to scalar systems. Yu et al. [79] studied

the design of an optimal controller with a single control channel and deterministic dropout rates.

Seiler et al. [66] considered Bernoulli packet losses only between the plant and the controller

and posed the controller design as an H∞ optimization problem. Other authors [64] [14] [12] [75]

model networked control systems with missing packets as Markovian jump linear systems (MJLSs),

however this approach gives suboptimal controllers since the estimators are stationary. Finally, Elia

[19][18] proposed to model the plant and the controller as deterministic time invariant discrete-time

systems connected to zero-mean stochastic structured uncertainty. The variance of the stochastic

perturbation is a function of the Bernoulli parameters, and the controller design is posed an an

optimization problem to maximize mean-square stability of the closed loop system. This approach

allows analysis of Multiple Input Multiple Output (MIMO) systems with many different controller

and receiver compensation schemes [19], however, it does not include process and observation noise

and the controller is restricted to be time-invariant, hence sub-optimal. There is also an extensive

literature, inspired by Shannon’s results on the maximum bit-rate that an imperfect channel can

reliably carry, whose goal is to determine the minimum bit-rate that is needed to stabilize a system

through feedback [77] [20] [28] [54] [72] [9] [47] [80] [42] [63]. This approach is somewhat

different from ours since in a packet-based communication network, such as ATMs, Ethernet and

Bluetooth, bits are grouped into packets and are considered as a single entity. Nonetheless there are

several similarities that are not yet fully explored.

This paper considers the alternative approach where the external compensator feeding the

controller is the optimal time varying Kalman gain. Moreover, this paper considers the general

Multiple Input Multiple Output (MIMO) case, and gives some necessary and sufficient conditions

for closed loop stability. The work of [32] is most closely related to this paper. However, we

consider the more general case when the matrix C is not the identity and there is noise in the
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observation and in the process. In addition, we also give stronger necessary and sufficient conditions

for existence of solution for the infinite horizon LQG.

The remainder of this paper is organized as follows. Section 2 provides a mathematical

formulation of the problems we consider. Section 3 offers some preliminary results. Section 4

illustrates the TCP case, while the UDP case is studied in section 5. Finally, conclusions and

directions for future work are offered in section 6.

4.2 Problem formulation

Consider the following linear stochastic system with intermittent observation and control

packets:

xk+1 = Axk +Buk +wk (4.1)

ua
k = νkuc

k (4.2)

yk = γkCxk + vk, (4.3)

where ua
k is the control input to the actuator, uc

k is the desired control input computed by the con-

troller, (x0,wk,vk) are Gaussian, uncorrelated, white, with mean (x̄0,0,0) and covariance (P0,Q,R)

respectively, and (γk,νk) are i.i.d. Bernoulli random variables with P(γk = 1) = γ̄ and P(νk = 1) = ν̄.

The stochastic variable νk models the loss packets between the controller and the actuator: if the

packet is correctly delivered then ua
k = uc

k, otherwise if it is lost then the actuator does nothing, i.e.

ua
k = 0. This compensation scheme is summarized by Equation (4.2). This modeling choice is not

unique: for example if the control packet uc
k is lost, then the actuator could use the previous control

value, i.e. ua
k = ua

k−1. However, the latter control compensation is slightly more involved to analyze

and it is left as future work. The stochastic variable γk models the packet loss between the sensor

and the controller: if the packet is delivered then yk = Cxk + vk, otherwise if it is lost then the con-

troller reads pure noise, i.e. yk = vk. This observation model is summarized by Equation (4.3). A

different observation formalism was proposed in [69], where the missing observation was modeled

as an observation for which the measurement noise had infinite covariance. It is possible to show

that both models are equivalent, but the one considered in this paper has the advantage to give rise

to simpler analysis. This arises from the fact that when no packet is delivered, then the optimal

estimator does not use the observation yk at all, therefore its value is irrelevant.
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Let us define the following information sets:

Ik =

⎧⎨⎩ Fk
∆= {yk,γk,νk−1}, TCP-like

Gk
∆= {yk,γk}, UDP-like

(4.4)

where yk = (yk,yk−1, . . . ,y1), γk = (γk,γk−1, . . . ,γ1), and νk = (νk,νk−1, . . . ,ν1).

Consider also the following cost function:

JN(uN−1, x̄0,P0) = E

[
x′NWNxN +

N−1

∑
k=0

(x′kWkxk +νku′kUkuk) | uN−1, x̄0,P0

]
(4.5)

where uN−1 = (uN−1,uN−2, . . . ,u1). Note that we are weighting the input only if it is successfully

received at the plant. In fact, if it is not received, the plant applies zero input and therefore there is

no energy expenditure.

We now look for a control input sequence u∗N−1 as a function of the admissible informa-

tion set Ik, i.e. uk = gk(Ik), that minimizes the functional defined in Equation (4.5), i.e.

J∗N(x̄0,P0)
∆= min

uk=gk(Ik)
JN(uN−1, x̄0,P0), (4.6)

where Ik = {Fk,Gk} is one of the sets defined in Equation (4.4). The set F corresponds to the infor-

mation provided under an acknowledgement-based communication protocols (TCP-like) in which

successful or unsuccessful packet delivery at the receiver is acknowledged to the sender within the

same sampling time period. The set G corresponds to the information available at the controller

under communication protocols in which the sender receives no feedback about the delivery of the

transmitted packet to the receiver (UDP-like). The UDP-like schemes are simpler to implement

than the TCP-like schemes from a communication standpoint. Moreover UDP-like protocols in-

cludes broadcasting which you cannot do with TCP-like. However the price to pay is a less rich

set of information. The goal of this paper is to design optimal LQG controllers and to estimate

their performance for each of these classes of protocols for a general discrete-time linear stochastic

system.

4.3 Mathematical Preliminaries

Before proceeding, let us define the following variables:

x̂k|k
∆= E[xk | Ik],

ek|k
∆= xk − x̂k|k,

Pk|k
∆= E[ek|ke′k|k | Ik].

(4.7)
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Derivations below will make use of the following facts:

Lemma 4.3.1. The following facts are true [70]:

(a) E
[
(xk − x̂k)x̂′k | Ik

]
= E

[
ek|kx̂′k | Ik

]
= 0

(b) E
[
x′kSxk | Ik

]
= x̂′kSx̂k + trace

(
SPk|k

) ∀S ≥ 0

(c) E [E[ g(xk+1) |Ik+1] | Ik] = E [g(xk+1) | Ik] ,∀g(·).

Proof. (a) It follows directly from the definition. In fact:

E
[
(xk − x̂k)x̂′k | Ik

]
= E

[
xkx̂′k − x̂kx̂′k | Ik

]
= E [xk | Ik] x̂′k − x̂kx̂′k

= 0

(b) Using standard algebraic operations and the previous fact we have:

E
[
x′kSxk |Ik

]
= E

[
(xk − x̂k + x̂k)′S(xk − x̂k + x̂k) |Ik

]
= x̂′kSx̂k +E

[
(xk − x̂k)′S(xk − x̂k)

]
+2E

[
x̂′kS(xk − x̂k) | Ik

]
= x̂′kSx̂k +2trace(SE[(xk − x̂k)x̂′k |Ik])+ trace(SE[(xk − x̂k)(xk − x̂k)′ |Ik])

= x̂′kSx̂k + trace{SPk|k}

(c) Let g() any measurable function, (X ,Y,Z) be any random vectors, and p their proba-

bility distribution, then

EY,Z [g(X ,Y,Z) | X ] =
∫

Z

∫
Y

g(X ,Y,Z)p(Y,Z|X)dYdZ

=
∫

Z

∫
Y

g(X ,Y,Z)p(Y |Z,X)p(Z|X)dYdZ

=
∫

Z

[∫
Y

g(X ,Y,Z)p(Y |Z,X)dY

]
p(Z|X)dZ

= EZ [ EY [g(X ,Y,Z) | Z,X ] | X ]

where we used the Bayes’ Rule. Since by hypothesis Ik ⊆ Ik+1, then fact (c) follows from the above

equality by substituting Ik = X and Ik+1 = (X ,Z).
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We now make the following computations that will be useful when deriving the equation

for the optimal LQG controller.

E[x′k+1Sxk+1 | Ik] = E[(Axk +νkBuk +wk)′S(Axk +νkBuk +wk) | Ik]

= E[x′kA′SAxk+ν2
ku′kB′SBuk+w′

kSwk+2νku′kB′SAxk+2(Axk +νkBuk)wk|Ik]

= E[x′kA′SAxk|Fk]+ ν̄u′kB′SBuk +2ν̄u′kB′SAE[xk|Ik]+ trace(SE[wkw′
k | Fk])

= E[x′kA′SAxk | Ik]+ ν̄u′kB′SBuk + 2ν̄u′kB′SAx̂k|k + trace(SQ) (4.8)

where both the independence of νk,wk,xk, and the zero-mean property of wk are exploited. The

previous expectation holds true for both the information sets, i.e. Ik = Fk or Ik = Gk. Also

E[e′k|kTek|k | Ik] = trace(TE[ek|ke′k|k | Ik])

= trace(T Pk|k), ∀T ≥ 0.

4.4 LQG control for TCP-like protocols

First, equations for the optimal estimator are derived. They will be needed to solve the

LQG controller design problem, as it will be shown later.

4.4.1 Estimator Design

Equations for optimal estimator are derived using similar arguments used for the standard

Kalman filtering equations. The innovation step is given by:

x̂k+1|k
∆= E[xk+1|νk,Fk] = E[Axk +νkBuk +wk|νk,Fk]

= AE[xk|Fk]+νkBuk = Ax̂k|k +νkBuk (4.9)

ek+1|k
∆= xk+1 − x̂k+1|k

= Axk +νkBuk +wk − (Ax̂+νkBuk)

= Aek|k +wk (4.10)

Pk+1|k
∆= E[ek+1|ke′k+1|k |νk,Fk]

= E

[(
Aek|k +wk

)(
Aek|k +wk

)′ |νk,Fk

]
= AE[ek|ke′k|k|Fk]A′ +E[wkw′

k]

= APk|kA′ +Q, (4.11)
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where the independence of wk and Fk, and the requirement that uk is a deterministic function of Fk,

are used. Since yk+1,γk+1, wk and Fk are independent, the correction step is given by:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 −Cx̂k+1|k) (4.12)

ek+1|k+1
∆= xk+1 − x̂k+1|k+1

= xk+1 −
(
x̂k+1|k + γk+1Kk+1(Cxk+1 + vk+1 −Cx̂k+1|k)

)
= (I − γk+1Kk+1C)ek+1|k − γk+1Kk+1vk+1 (4.13)

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k

= Pk+1|k − γk+1Pk+1|kC′(CPk+1|kC′ +R)−1CPk+1|k (4.14)

Kk+1
∆= Pk+1|kC′(CPk+1|kC′ +R)−1, (4.15)

where we simply applied the standard derivation for the time varying Kalman filter using the fol-

lowing time varying system matrices: Ak = A, Ck = γkC, and Cov(vk) = R.

4.4.2 Controller design

Derivation of the optimal feedback control law and the corresponding value for the ob-

jective function will follow the dynamic programming approach based on the cost-to-go iterative

procedure.

Define the optimal value function Vk(xk) as follows:

VN(xN) ∆= E[x′NWNxN | FN ]

Vk(xk)
∆= minuk E[x′kWkxk +νku′kUkuk +Vk+1(xk+1)|Fk].

(4.16)

where k = N − 1, . . . ,1. Using dynamic programming theory [7], one can show that J∗N = V0(x0).

Under TCP-like protocols the following lemma holds true:

Lemma 4.4.1. The value function Vk(xk) defined in Equations (4.16) for the system dynamics of

Equations (4.1)-(4.1) under TCP-like protocols can be written as:

Vk(xk) = E[ x′kSkxk | Fk]+ ck, k = N, . . . ,0 (4.17)

where the matrix Sk and the scalar ck can be computed recursively as follows:

Sk = A′Sk+1A+Wk − ν̄A′Sk+1B(B′Sk+1B+Uk)−1B′Sk+1A (4.18)

ck = trace
(
(A′Sk+1A+Wk −Sk)Pk|k

)
+ trace(Sk+1Q)+E[ck+1 | Fk] (4.19)
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with initial values SN = WN and cN = 0. Moreover the optimal control input is given by:

uk = −(B′Sk+1B+Uk)−1B′Sk+1Ax̂k|k = Lk x̂k|k. (4.20)

Proof. The proof follows an induction argument. The claim is certainly true for k = N with the

choice of parameters SN = WN and cN = 0. Suppose now that the claim is true for k + 1, i.e.

Vk+1(xk+1) = E[ x′k+1Sk+1xk+1 | Fk+1]+ ck+1. The value function at time step k is the following:

Vk(xk) = min
uk

E[x′kWkxk +νku′kUkuk +Vk+1(xk+1) | Fk]

= min
uk

E[x′kWkxk +νku′kUkuk +E[x′k+1Sk+1xk+1 + ck+1 |Fk+1] |Fk]

= min
uk

E[x′kWkxk +νku′kUkuk + x′k+1Sk+1xk+1 + ck+1|Fk] (4.21)

= E[x′kWkxk + x′kA′Sk+1Axk | Fk]+ trace(Sk+1Q)+E[ck+1 | Fk]+

+ν̄ min
uk

(
u′k(Uk +B′Sk+1B)uk +2u′kB′Sk+1Ax̂k|k

)
where we used Lemma 1(c) to get the third equality, and Equation (4.8) to obtain the last equal-

ity. The value function is a quadratic function of the input, therefore the minimizer can be simply

obtained by solving ∂Vk
∂uk

= 0, which gives Equation (4.20). The optimal feedback is thus a simple

linear function of the estimated state. If we substitute the minimizer back into Equation (4.21) we

get:

Vk(xk) = E[x′kWkxk + x′kA′Sk+1Axk | Ik]+ trace(Sk+1Q)+E[ck+1 | Ik]−
−ν̄x̂′k|kA′Sk+1B(Uk +B′Sk+1B)−1B′Sk+1Ax̂k|k (4.22)

= E[x′kWkxk + x′kA′Sk+1Axk − ν̄x′kA′Sk+1B(Uk +B′Sk+1B)−1B′Sk+1Axk | Ik]+

+trace(Sk+1Q)+E[ck+1 | Ik]+ ν̄ trace(A′Sk+1B(Uk +B′Sk+1B)−1B′Sk+1 Pk|k)

where we used Lemma 1(b). Therefore, the claim given by Equation (4.17) is satisfied also for time

step k for all xk if and only if the Equations (4.18) and (4.19) are satisfied.

Since J∗N(x̄0,P0) = V0(x0), from the lemma it follows that the cost function for the optimal

LQG using TCP-like protocols is given by:

J∗N = x̄′0S0x̄0 + trace(S0P0)+
N−1

∑
k=0

trace((A′Sk+1A+Wk −Sk)Eγ[Pk|k]+Sk+1Q), (4.23)
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where we used the fact E[x′0S0x0] = x̄′0S0x̄0 + trace(S0P0), and Eγ[·] explicitly indicates that the ex-

pectation is calculated with respect to the arrival sequence {γk}.

It is important to remark that the error covariance matrices {Pk|k}N
k=0 are stochastic since

they depend on the sequence {γk}. Moreover, since the matrix Pk+1|k+1 is a nonlinear function of

the previous time step matrix covariance Pk|k, as can be observed from Equations (4.11) and (4.15),

the exact expected value of these matrices, Eγ[Pk|k], cannot be computed analytically, as shown in

[69]. However, they can be bounded by computable deterministic quantities, as shown in [69] from

which we can derive the following lemma:

Lemma 4.4.2 ([69]). The expected error covariance matrix Eγ[Pk|k] satisfies the following bounds:

P̃k|k ≤ Eγ[Pk|k] ≤ P̂k|k ∀k ≥ 0, (4.24)

where the matrices P̂k|k and P̃k|k can be computed as follows:

P̂k+1|k = AP̂k|k−1A′ +Q− γ̄AP̂k|k−1C
′(CP̂k|k−1C

′ +R)−1CP̂k|k−1A′ (4.25)

P̂k|k = P̂k|k−1 − γ̄P̂k|k−1C
′(CP̂k|k−1C

′ +R)−1CP̂k|k−1 (4.26)

P̃k+1|k = (1− γ̄)AP̃k|k−1A′ +Q (4.27)

P̃k|k = (1− γ̄)P̃k|k−1 (4.28)

where the initial conditions are P̂0|0 = P̃0|0 = P0.

Proof. The proof is based on the observation that the matrices Pk+1|k and Pk|k are concave and

monotonic functions of Pk|k−1. The proof is given in [69] and is thus omitted.

From this lemma it follows that also the minimum achievable cost J∗N , given by Equation

(4.23), cannot be computed analytically, but can bounded as follows:

Jmin
N ≤ J∗N ≤ Jmax

N (4.29)

Jmax
N = x̄′0S0x̄0 + trace(S0P0)+

N−1

∑
k=0

trace(Sk+1Q))+
N−1

∑
k=0

trace
(
(A′Sk+1A+Wk −Sk)P̂k|k

)
(4.30)

Jmin
N = x̄′0S0x̄0 + trace(S0P0)+

N−1

∑
k=0

trace(Sk+1Q)+
N−1

∑
k=0

trace
(
(A′Sk+1A+Wk −Sk)P̃k|k

)
(4.31)
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4.4.3 Finite and Infinite Horizon LQG control

The results derived in the previous sections can be summarized in the following theorem:

Theorem 4.4.1. Consider the system (4.1)-(4.3) and consider the problem of minimizing the cost

function (4.5) within the class of admissible policies uk = f (Fk), where Fk is the information avail-

able under TCP-like schemes, given in Equation (4.4). Then:

(a) The separation principle still holds for TCP-like communication, since the optimal esti-

mator, given by Equations (4.9),(4.11),(4.12),(4.14) and (4.15), is independent of the control

input uk.

(b) The optimal estimator gain Kk is time-varying and stochastic since it depends on the past

observation arrival sequence {γ j}k
j=1.

(c) The optimal control input, given by Equations (4.20) and (4.18) with initial condition SN =

WN, is a linear function of the estimated state x̂k|k, i.e. uk = Lkx̂k|k, and is independent of the

process sequences {νk,γk}.

Proof. The proof follows from the results given in the previous sections.

The infinite horizon LQG can be obtained by taking the limit for N →+∞ of the previous

equations. However, as explained above, the matrices {Pk|k} depend nonlinearly on the specific re-

alization of the observation sequence {γk}, therefore the expected error covariance matrices Eγ[Pk|k]

and the minimal cost J∗N cannot be computed analytically and do not seem to have limit [69]. Dif-

ferently from standard LQG optimal regulator [10], the estimator gain does not converge to a steady

state value, but is strongly time-varying due to its dependence on the arrival process {γk}. More-

over, while the standard LQG optimal regulator always stabilizes the original system, in the case

of observation and control packet losses, the stability can be lost if the arrival probabilities ν̄, γ̄ are

below a certain threshold. This observation come from the study of existence of solution for a Mod-

ified Riccati Algebraic Equation (MARE), S = Π(S,A,B,W,U,ν), which was introduced by [35]

and studied in [37], [69] and [18], where the nonlinear operator Π(·) is defined as follows:

Π(S,A,B,Q,R,ν) ∆= A′SA+W −νA′SB(B′SB+U)−1B′SA (4.32)

In particular, Equation (4.18), i.e. Sk+1 = Π(Sk,A,B,W,U,ν), is the dual of the estimator equation

presented in [69], i.e. Pk+1 = Π(Pk,A′,C′,Q,R,γ). The results about the MARE are summarized in

the following lemma
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Lemma 4.4.3. Consider the modified Riccati equation defined in Equation (4.32). Let A be unstable,

(A,B) be controllable, and (A,W
1
2 ) be observable. Then:

(a) The MARE has a unique strictly positive definite solution S∞ if and only if ν > νc, where

νc is the critical arrival probability defined as:

νc
∆= inf

ν
{0 ≤ ν ≤ 1,S ≥ 0) |S = Π(S,A,B,W,U,ν)}.

(b) The critical probability νc satisfy the following analytical bounds:

pmin ≤ νc ≤ pmax

pmin
∆= 1− 1

maxi |λu
i (A)|2

pmax
∆= 1− 1

∏i |λu
i (A)|2

where λu
i (A) are the unstable eigenvalues of A. Moreover, νc = pmin when B is square and

invertible, and νc = pmax when B is rank one.

(c) The critical probability can be numerically computed via the solution of the following

quasi-convex LMIs optimization problem:

νc = argminν̄Ψν(Y,Z) > 0, 0 ≤ Y ≤ I.

Ψν(Y,Z) =

⎡⎢⎢⎢⎢⎣
Y

√
ν(YA′ +ZB′)

√
1−νYA′

√
ν(AY +BZ′) Y 0√

1−νAY 0 Y

⎤⎥⎥⎥⎥⎦
(d) If ν > νc, then limk→+∞ Sk = S∞ for all initial conditions S0 ≥ 0, where

Sk+1 = Π(Sk,A,B,W,U,ν)

.

Proof. The proof of facts (a),(c), and (d) can be found in [69]. The proof νc = pmin when B is square

and invertible can be found in [35], and the proof νc = pmax when B is rank one in [18].

In [69] statistical analysis of the optimal estimator was given, which we report here for

convenience:
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Theorem 4.4.2 ([69]). Consider the system (4.1)-(4.3) and the optimal estimator under TCP-like

protocols, given by Equations (4.9),(4.11),(4.12),(4.14) and (4.15). Assume that (A,Q
1
2 ) is con-

trollable, (A,C) is observable, and A is unstable. Then there exists a critical observation arrival

probability γc, such that the expectation of estimator error covariance is bounded if and only if the

observation arrival probability is greater than the critical arrival probability, i.e.

Eγ[Pk|k] ≤ M ∀k iff γ̄ > γc.

where M is a positive definite matrix possibly dependent on P0. Moreover, it is possible to compute

a lower and an upper bound for the critical observation arrival probability γc, i.e.:

pmin ≤ γc ≤ γmax ≤ pmax

, where:

γmax
∆= inf

γ
{0 ≤ γ ≤ 1,P ≥ 0) |P = Π(P,A′,C′,Q,R,γ)},

where pmin and pmax are defined in Lemma 4.4.3.

Proof. The proof can be found in [69] and is therefore omitted.

Using the previous theorem and the results from the previous section, we can prove the

following theorem for the infinite horizon optimal LQG under TCP-like protocols:

Theorem 4.4.3. Consider the same system as defined in the previous theorem with the following

additional hypothesis: WN =Wk =W and Uk =U. Moreover, let (A,B) and (A,Q
1
2 ) be controllable,

and let (A,C) and (A,W
1
2 ) be observable. Moreover, suppose that ν̄ > νc and γ̄ > γmax, where νc

and γmax are defined in Lemma 4.4.3 and in Theorem 4.4.2, respectively. Then we have:

(a) The infinite horizon optimal controller gain is constant:

lim
k→∞

Lk = L∞ = −(B′S∞B+U)−1B′S∞A (4.33)

(b) The infinite horizon optimal estimator gain Kk, given by Equation (4.15), is stochastic and

time-varying since it depends on the past observation arrival sequence {γ j}k
j=1.

(c) The expected minimum cost can be bounded by two deterministic sequences:

1
N

Jmin
N ≤ 1

N
J∗N ≤ 1

N
Jmax

N (4.34)
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where Jmin
N ,Jmax

N converge to the following values:

Jmax
∞

∆= lim
N→+∞

1
N

Jmax
N

= trace((A′S∞A+W −S∞)(P̂∞ − γ̄P̂∞C′(CP̂∞C′ +R)−1CP̂∞))+ trace(S∞Q)

Jmin
∞

∆= lim
N→+∞

1
N

Jmin
N

= (1− γ̄)trace
(
(A′S∞A+W −S∞)P̃∞

)
+ trace(S∞Q),

and the matrices S∞,P∞,P∞ are the positive definite solutions of the following equations:

S∞ = A′S∞A+W − ν̄A′S∞B(B′S∞B+U)−1B′S∞A

P∞ = AP∞A′ +Q− γ̄AP∞C′(CP∞C′ +R)−1CP∞A′

P∞ = (1− γ̄)AP∞A′ +Q

Proof. (a) Since by hypothesis ν̄ > νc, from Lemma 4.4.3(d) follows that limk→+∞ Sk = S∞. There-

fore Equation (4.33) follows from Equation (4.20).

(b) This follows from the dependence on the arrival sequence {γk} of the optimal state

estimator given by Equations (4.9),(4.11),(4.12),(4.14) and (4.15). Since ν̄ > νc

(c) Equation (4.25) can be written in terms of the MARE as P̂k+1|k = Π(P̂k|k−1,A
′,C′,Q,R,γ),

therefore since γ̄ > γmax from Lemma 4.4.3(d) it follows that limk→+∞ P̂k|k−1 = P∞, where P∞ is

the solution of the MARE P∞ = Π(P∞,A′,C′,Q,R,γ). Also limk→+∞ P̃k|k−1 = P∞, where P̃k|k−1

is defined in Equation (4.27) and P∞ is the solution of the Lyapunov equation P̂∞ = ÃP̂∞Ã′ + Q,

where Ã =
√

1− γ̄A. Such solution clearly exists since
√

1− γ̄ < 1
pmin

= 1
maxi |λu

i (A)| and thus the

matrix Ã is strictly stable. From Equations (4.26) and (4.28) it follows that limk→+∞ P̂k|k = P∞ −
γ̄P∞C′(CP∞C′ + R)−1CP∞ and limk→+∞ P̃k|k = (1− γ̄)P∞. Also limk→+∞ Sk+1 = limk→+∞ Sk = S∞.

Finally from Equations (4.29) - (4.31) and the previous observations follow the claim.

4.5 LQG control for UDP-like protocols

In this section equations for the optimal estimator and controller design for the case of

communication protocols that do not provide any kind of acknowledgment of successful packet

delivery (UDP-like). This case corresponds to the information set Gk, as defined in Equation (4.4).

Some of the derivations are analogous to the previous section and are therefore skipped.



72

4.5.1 Estimator Design

We derive the equations for the optimal estimator using similar arguments to the standard

Kalman filtering equations. The innovation step is given by:

x̂k+1|k
∆= E[xk+1|Gk] = E[Axk +νkBuk +wk|Gk]

= AE[xk|Gk]+E[νk]Buk

= Ax̂k|k + ν̄Buk (4.35)

ek+1|k
∆= xk+1 − x̂k+1|k

= Axk +νkBuk +wk − (Ax̂k|k + ν̄Buk)

= Aek|k +(νk −ν)Buk +wk (4.36)

Pk+1|k
∆= E[ek+1|ke′k+1|k |Gk]

= AE[ek|ke′k|k|Gk]A′ +E[(νk −ν)2]Buku′kB′ +E[wkw′
k]

= APk|kA′ + ν̄(1− ν̄)Buku′kB′ +Q, (4.37)

where we used the independence and zero-mean of wk, (νk − ν̄), and Gk, and the fact that uk is a

deterministic function of the information set Gk. Note how under UDP-like communication, differ-

ently from TCP-like, the error covariance Pk+1|k depends explicitly on the control input uk. This is

the main difference with control feedback systems under TCP-like protocols.

The correction step is the same as for the TCP case:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 −Cx̂k+1|k)

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k, (4.38)

Kk+1
∆= Pk+1|kC′(CPk+1|kC′ +R)−1, (4.39)

where again we considered a time varying system with Ak = A and Ck = γkC as we did for the

optimal estimator under TCP-like protocols.

4.5.2 Controller design: General case

In this section, we show that the optimal LQG controller, under UDP-like communica-

tion protocols, is in general not a linear function of the state estimate, and that the estimator and

controller design cannot be separated anymore. To show this, we construct a counter-example con-

sidering a simple scalar system and we proceed using the dynamic programming approach. Let us
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consider the scalar system where A = 1,B = 1,C = 1,WN = Wk = 1,Uk = 0,R = 1,Q = 0. Sim-

ilarly to the TCP case, we define the value function, Vk(xk), as in Equations (4.16) where we

just need to substitute the information set Fk with Gk. For k = N, the value function is given by

VN(xN) = E[x′NWNxN | GN ] = E[x2
N | GN ]. For k = N −1 we have:

VN−1(xN−1) = min
uN−1

E[x2
N−1 +VN(xN) | GN−1]

= min
uN−1

E[x2
N−1 + x2

N | GN−1]

= min
uN−1

E[x2
N−1 +(xN−1 +νN−1uN−1)2 | GN−1]

= min
uN−1

(E[2x2
N−1|GN−1]+E[ν2

N−1]u
2
N−1 +2uN−1E[νN−1]E[xN−1|GN−1])

= min
uN−1

(E[2x2
N−1|GN−1]+ ν̄u2

N−1 +2ν̄uN−1x̂N−1|N−1),

where we used the independence of νN−1 and GN−1, and the fact that uN−1 is a deterministic function

of the information set GN−1. The cost is a quadratic function of the input uN−1, therefore the

minimizer can be simply obtained by finding ∂VN−1
∂uN−1

= 0, which is given by u∗N−1 = −x̂N−1|N−1. If

we substitute back u∗N−1 into the value function we have:

VN−1(xN−1) = E[2x2
N−1|GN−1]− ν̄x̂2

N−1|N−1

= E[(2− ν̄)x2
N−1|GN−1]+ ν̄PN−1|N−1

where we used Lemma 4.3.1(b). Before proceeding note that:

PN−1|N−1 = PN−1|N−2 − γN−1

P2
N−1|N−2

PN−1|N−2 +1

= PN−1|N−2 − γN−1

(
PN−1|N−2 −1+

1
PN−1|N−2 +1

)
= (1− γN−1)

(
PN−2|N−2 + ν̄(1− ν̄)u2

N−2

)
+ γN−1 +

+γN−1
1

PN−2|N−2 + ν̄(1− ν̄)u2
N−2 +1

E[PN−1|N−1|GN−2] = (1− γ̄)
(
PN−2|N−2 + ν̄(1− ν̄)u2

N−2

)
+ γ̄+ γ̄

1

PN−2|N−2 + ν̄(1− ν̄)u2
N−2 +1

E[x2
N−1|GN−2] = E[(xN−2 +νN−2uN−2)2|GN−2]

= E[x2
N−2|GN−2]+2E[νN−2]E[xN−2|GN−2]uN−2 +E[νN−2]u2

N−2

= E[x2
N−2|GN−2]+2ν̄x̂N−2|N−2uN−2 + ν̄u2

N−2,

where we used Equations (4.37)-(4.39), and the fact that uN−2 and PN−2|N−2 are a deterministic

function of the information set GN−2. Using the previous equations we proceed to compute the
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value function for k = N −2:

VN−2(xN−2) = min
uN−2

E[x2
N−2 +VN−1(xN−1) | GN−2]

= min
uN−2

E[x2
N−2 +(2− ν̄)x2

N−1 + ν̄PN−1|N−1 | GN−2]

= (3− ν̄)E[x2
N−2|GN−2]+ ν̄(1− γ̄)PN−2|N−2 + ν̄γ̄+

+min
uN−1

(
2ν̄(2− ν̄)x̂N−2|N−2uN−2 + ν̄(2− ν̄)u2

N−2 +

+ ν̄2(1− ν̄)(1− γ̄)u2
N−2 + ν̄γ̄

1

PN−2|N−2 + ν̄(1− ν̄)u2
N−2 +1

)

The first three terms inside the round parenthesis are convex quadratic functions of the control

input uN−2, however the last term is not. Therefore, the minimizer u∗N−2 is, in general, a non-linear

function of the information set Gk. The nonlinearity of the optimal controller arises from the fact

that the correction error covariance matrix Pk+1|k+1 is a non-linear function of the innovation error

covariance Pk+1|k, as it can be seen in Equations (4.38) and (4.39). The only case when Pk+1|k+1 is

linear in Pk+1|k is when measurement noise covariance R = 0 and the observation matrix C is square

and invertible, from which follows that the optimal control is linear in the estimated states. However

it is important to remark that the separation principle still does not hold even for this special case,

since the control input affects the estimator error covariance.

We can summarize these results in the following theorem:

Theorem 4.5.1. Let us consider the stochastic system defined in Equations (4.1) with horizon N ≥ 2.

Then:

(a) The separation principle does not hold since the estimator error covariance depends on

the control input, as shown in Equation (4.37).

(b) The optimal control feedback uk = g∗k(Gk) that minimizes the cost functional defined in

Equation (4.5) under UDP-like protocols is, in general, a nonlinear function of information

set Gk.

(c) The optimal control feedback uk = g∗k(Gk) is a linear function of the estimated state x̂k|k if

and only if the matrix C is invertible and there is no measurement noise.

The next section will compute explicitly the optimal control for the special case and will

give necessary and sufficient conditions for stability and performance of the infinite horizon sce-

nario.
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4.5.3 Special Case: R=0 and C invertible

Without loss of generality we can assume C = I, since the linear transformation z = Cx

would give an equivalent system where the matrix C is the indentity. Let us now consider the case

when there is no measurement noise, i.e. R = 0. These assumption mean that it is possible to

measure the state xk when a packet is delivered. In this case the estimator Equations (4.37)-(4.39)

simplify as follows:

Kk+1 = I (4.40)

Pk+1|k+1 = (1− γk+1)Pk+1|k

= (1− γk+1)(A′Pk|kA+Q+ ν̄(1− ν̄)Buku′kB′) (4.41)

E[Pk+1|k+1|Gk] = (1− γ̄)(A′Pk|kA+Q+ ν̄(1− ν̄)Buku′kB′) (4.42)

where in the last equation we used independence of γk+1 and Gk, and we used the fact that Pk|k is a

deterministic function of Gk.

Similarly to what done in the analysis of TCP-like optimal control, we claim that the value

function V ∗
k (xk) can be written as follows:

Vk(xk) = x̂′k|kSkx̂k|k + trace(TkPk|k)+ trace(DkQ) (4.43)

for k = N, . . . ,0. This is clearly true for k = N, in fact we have:

VN(xN) = E[x′NWNxN |GN ] = x̂′N|NWNx̂N|N + trace(WNPN|N)

where we used Lemma 4.3.1(b), therefore the statement is satisfied by SN = WN ,TN = WN ,DN = 0.

Note that Equation (4.43) can be rewritten as follows:

Vk(xk) = E[x′kSkxk|Gk]+ trace
(
(Tk −Sk)Pk|k

)
+ trace(DkQ)

where we used once again Lemma 4.3.1(b). Moreover, to simplify notation we define Hk
∆= (Tk−Sk).
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Let us suppose that Equation (4.43) is true for k +1 and let us show by induction it holds true for k:

Vk(xk) = min
uk

E[x′kWkxk +νku′kUkuk +Vk+1(xk+1) | Gk]

= min
uk

(
E[x′kWkxk +νku′kUkuk + x′k+1Sk+1xk+1 + trace(Hk+1Pk+1|k+1)+ trace(Dk+1Q) | Gk]

)
= E[x′k(Wk+A′Sk+1A)xk|Gk]+trace(Sk+1Q)+(1−γ̄)trace(Hk+1(A′Pk|kA+Q))+trace(Dk+1Q)+

+min
uk

(
ν̄u′kUkuk+ν̄u′kB′Sk+1Buk+2ν̄u′kB′Sk+1Ax̂k|k+ν̄(1−ν̄)(1−γ̄)trace(Hk+1Buku′kB′)

)
= E[x′k(Wk+A′Sk+1A)xk|Gk]+trace

(
(Dk+1+(1−γ̄)Hk+1)Q

)
+(1−γ̄)trace(AHk+1A′Pk|k)+

+trace(Sk+1Q)+ν̄ min
uk

(
u′k
(
Uk+B′(Sk+1+(1−ν̄)(1−γ̄)Hk+1)B

)
uk+2u′kB′Sk+1Ax̂k|k

)
= x̂′k|k(Wk +A′Sk+1A)x̂k|k + trace

(
(Dk+1 +(1− γ̄)Tk+1 + γ̄Sk+1)Q

)
+

+trace
(
(Wk + γ̄A′Sk+1A+(1− γ̄)ATk+1A′)Pk|k

)
+

+ν̄ min
uk

(
u′k
(
Uk +B′((1− ᾱ)Sk+1 + ᾱTk+1)B

)
uk +2u′kB′Sk+1Ax̂k|k

)
,

where we defined ᾱ = (1− ν̄)(1− γ̄), we used Lemma 4.3.1(c) to get the second equality, and

Equations (4.8) and (4.42) to get the last equality. Since the quantity inside the big round parenthesis

a convex quadratic function, the minimizer is the solution of ∂Vk
∂uk

= 0 which is given by:

u∗k =−
(

Uk +B′((1− ᾱ)Sk+1 + ᾱTk+1
)
B
)−1

B′Sk+1Ax̂k|k (4.44)

= Lk x̂k|k (4.45)

which is linear function of the estimated state x̂k|k. Substituting back into the value function we get:

Vk(xk) = x̂′k|k(Wk +A′Sk+1A)x̂k|k + trace
(
(Dk+1 +(1− γ̄)Tk+1 + γ̄Sk+1)Q

)
+

+trace
(
(Wk +A′Sk+1A+(1− γ̄)ATk+1A′)Pk|k

)− ν̄x̂′k|kA′Sk+1BLkx̂k|k

= x̂′k|k(Wk + γ̄A′Sk+1A− ν̄x̂′k|kA′Sk+1BLk)x̂k|k + trace
(
(Dk+1 +(1− γ̄)Tk+1 + γ̄Sk+1)Q

)
+

+trace
(
(Wk +A′Sk+1A+(1− γ̄)ATk+1A′)Pk|k

)
,

where we used Lemma 4.3.1(b) in the last equality. From the last equation we see that the value

function can be written as in Equation (4.43) if and only if the following equations are satisfied:

Sk = A′Sk+1A+Wk − ν̄A′Sk+1B
(
Uk +B′ ((1− ᾱ)Sk+1 + ᾱTk+1)B

)−1
B′Sk+1A

= ΦS
γ,ν(Sk+1,Tk+1) (4.46)

Tk = (1− γ̄)A′Tk+1A+ γ̄A′Sk+1A+Wk

= ΦT
γ,ν(Sk+1,Tk+1) (4.47)

Dk = (1− γ̄)Tk+1 + γ̄Sk+1 +Dk+1 (4.48)
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The optimal minimal cost for the finite horizon, J∗N = V0(x0) is then given by:

J∗N = x′0S0x0 + trace(S0P0)+
N

∑
k=1

trace
((

(1− γ̄)Tk + γ̄Sk
)
Q
)

(4.49)

For the infinite horizon optimal controller, necessary and sufficient condition for the av-

erage minimal cost J∞
∆= limN→+∞

1
N J∗N to be finite is that the coupled iterative Equations (4.46) and

(4.47) should converge to a finite value S∞ and T∞ as N → +∞. In the work of Imer et al. [32]

similar equations were derived for the optimal LQG control under UDP for the same framework

with the additional conditions Q = 0 and B square and invertible. They find necessary and sufficient

conditions for those equations to converge. Unfortunately, these conditions do not hold for the gen-

eral case when B in not square. This is a very frequent situation in control systems, where in general

we simply have (A,B) controllable.

Theorem 4.5.2. Also, assume that the pair (A,W 1/2) is observable. Consider the following opera-

tor:

ϒ(S,T,L) = A′SA+W +2ν̄A′SBL+ ν̄L′
(

U +B′((1− ᾱ)S + ᾱT
)
B
)

L (4.50)

Then the following claims are equivalent:

(a) There exist a matrix L̃ and positive definite matrices S̃ and T̃ such that:

S̃ > 0, T̃ > 0, S̃ = ϒ(S̃, T̃ , L̃), T̃ = ΦT (S̃, T̃ )

(b) Consider the sequences:

Sk+1 = ΦS(Sk,Tk), Tk+1 = ΦT (Sk,Tk)

where the operators ΦS(·),ΦT (·) are defined in Equations (4.46) and (4.47). For any initial

condition S0,T0 ≥ 0 we have

lim
k→∞

Sk = S∞, lim
k→∞

Tk = T∞

and S∞,T∞ are the unique positive definite solution of the following equations

S∞ > 0, T∞ > 0, S∞ = ΦS(S∞,T∞), T∞ = ΦT (S∞,T∞)

The convergence of Equations (4.46) and (4.47) depend on the control and observation

arrival probabilities γ̄, ν̄. General analytical conditions for convergence are not available, but some

necessary and sufficient conditions can be found.
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Lemma 4.5.1. Let us consider the fixed points of Equations (4.46) and (4.47), i.e. S = ΦS(S,T ),T =

ΦT (S,T ) where S,T ≥ 0. Let A be unstable. A necessary condition for existence of solution is

|A|2(γ̄+ ν̄−2γ̄ν̄) < γ̄+ ν̄− γ̄ν̄ (4.51)

where |A| ∆= maxi |λi(A)| is the largest eigenvalue of the matrix A.

Lemma 4.5.2. Let us consider the fixed points of Equations (4.46) and (4.47), i.e. S = ΦS(S,T ),T =

ΦT (S,T ) where S,T ≥ 0. Let A be unstable, (A,W 1/2) observable and B square and invertible. Then

a sufficient condition for existence of solution is

|A|2(γ̄+ ν̄−2γ̄ν̄) < γ̄+ ν̄− γ̄ν̄ (4.52)

where |A| ∆= maxi |λi(A)| is the largest eigenvalue of the matrix A.
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Figure 4.3: Region of convergence for UDP-like and TCP-like optimal control in the scalar case.
These bounds are tight in the scalar case. The thin solid line corresponds to the boundary of the
stability region for a dead-beat controller under UDP-like protocols as given by [32], which is much
more restrictive than what can be achieved with optimal UDP controllers.

A graphical representation of the stability bounds are shown in Figure 4.3, where we

considered a scalar system with parameters |A| = 1.1, which gives the critical probability pmin =

1− 1/|A|2 = 1.173 as defined in Theorem 4.4.2. The critical arrival probabilities for TCP-like
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optimal control are γc = νc = pmin. The boundary for the stability region of optimal control under

UDP-like protocols given in Lemma 4.5.2 can be written also as ν̄ > γ̄(A2−1)
γ̄(2A2−1)+1−A2 for γ̄ > pmin.

It is important to remark that the stability region of optimal control under UDP-like protocols is

larger than the stability region obtained using a dead-beat controller proposed in [32], i.e. uk =

−γkB−1Ayk = −γkB−1Axk, which is given by γ̄ν̄ > 1− 1/|A|2 and graphically shown in Figure 4.3

. This is not surprising since the dead-beat controller is rather aggressive and requires a large

gain L, which increases the estimator error covariance in Equation (4.42). Indeed, as shown in

the constructive proof of Lemma 4.5.2, controllers with similar structure but smaller gains, i.e.

uk = −ηγkB−1Ayk = −ηγkB−1Axk where η < 1, have a larger region of stability.

We can summarize the results of this section in the following theorem

Theorem 4.5.3. Consider the system (4.1)-(4.3) and consider the problem of minimizing the cost

function (4.5) within the class of admissible policies uk = f (Gk), where Gk is the information avail-

able under TCP-like schemes, given in Equation (4.4). Assume also that R = 0 and C is square and

invertible. Then:

(a) The optimal estimator gain is constant and in particular Kk = I if C = I.

(b) The infinite horizon optimal control exists if and only if there exists positive definite matri-

ces S∞,T∞ > 0 such that S∞ = ΦS(S∞,T∞) and T∞ = ΦT (S∞,T∞), where ΦS and ΦS are defined

in Equations (4.46) and (4.47).

(c) The infinite horizon optimal controller gain is constant:

lim
k→∞

Lk = L∞ = −(B′(ᾱT∞ +(1− ᾱ)S∞)B+U)−1B′S∞A (4.53)

(d) A necessary condition for existence of S∞,T∞ > 0 is

|A|2(γ̄+ ν̄−2γ̄ν̄) < γ̄+ ν̄− γ̄ν̄ (4.54)

where |A| ∆= maxi |λi(A)| is the largest eigenvalue of the matrix A. This condition is also

sufficient if B is square and invertible.

(e) The expected minimum cost converges:

J∗∞ = lim
k→∞

1
N

J∗N = trace
(
(1− γ̄)T∞ + γ̄S∞)Q

)
(4.55)
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Figure 4.4: Exact infinite horizon cost using optimal LQG control under UDP-like and upper bound
under TCP-like communication protocols in the scalar case.

In the scenario considered in this section when R = 0 and C is invertible, it is possible

to directly compare the performance of optimal control under TCP-like and UDP-like protocols in

terms of the infinite horizon cost J∗∞. Let us consider for example the scalar system with the follow-

ing parameters A = 1.1,B = C = Q = W = U = 1,R = 0. For simplicity also consider symmetric

communication channels for sensor reading and control inputs, i.e. ν̄ = γ̄. Using results from The-

orem 4.4.3 and Theorem 4.5.3 we can compute the infinite horizon cost using optimal controllers

under UDP-like and an upper bound on the cost under TCP-like communication protocols, which

are shown in Fig. 4.4. As expected optimal control performance under TCP-like is better than UDP-

like, however the two curves are comparable for moderate packet loss. Although the TCP-like curve

is only an upper bound of the true expected cost, it has been observed to be rather close to the em-

pirical cost [68]. The observation that TCP-like and UDP-like optimal control performances seem

remarkably close is extremely valuable since UDP-like protocols are much simpler to implement

than TCP-like.
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4.6 Conclusions

In this paper we have analyzed the LQG control problem in the case where both obser-

vation and control packets may be lost during transmission over a communication channel. This

situation arises frequently in distributed systems where sensors, controllers and actuators reside in

different physical locations and have to rely on data networks to exchange information. We have

presented analyses of the LQG control problem under two classes of protocols: TCP and UDP. In

TCP protocols, acknowledgements of successful transmissions of control packets are provided to

the controller, while in UDP protocols, no such feedback is provided.

For TCP-like protocols we have solved a general LQG control problem in both the finite

and infinite horizon cases. We have shown that the optimal control is a linear function of the state

and that the separation principle holds. As a consequence, controller and estimator design problems

are decoupled for these TCP protocols. However, unlike standard LQG control with no packet loss,

the gain of the optimal observer does not converge to a steady state value. Rather, the optimal

observer gain is a time-varying stochastic function of the packet arrival process. Several infinite

horizon LQG controller design methodologies proposed in the literature impose time-invariance

on the controller, and are therefore sub-optimal. In analyzing the infinite horizon problem, we have

shown that the infinite horizon cost is bounded if and only if arrival probabilities γ̄, ν̄ exceed a certain

threshold. Thus, the underlying communication channel must be sufficiently reliable in order for

LQG optimal controllers to stabilize the plant.

UDP-like protocols present a much more complex problem. We have shown that the lack

of acknowledgement of control packets results in the failure of the separation principle. Estimation

and control are now intimately coupled. We have shown that the LQG optimal control is, in general,

nonlinear in the estimated state. As a consequence, the optimal control law cannot be determined

explicitly in closed form, rendering this solution impractical. In the special case where the state is

completed observed (C is invertible and there is no output noise i.e., R = 0), the optimal control is

indeed linear. This special case can be viewed as one where it becomes possible to deduce whether

or not the control packet was successfully transmitted. We have exhibited that the LQG optimal

solution in this special case. We have shown that the the set of arrival probabilities γ̄, ν̄ for which the

infinite horizon cost function is bounded is smaller than the equivalent set for TCP-like protocols.

However, for moderate packet loss probabilities the performance of these two classes of protocols is

comparable. This makes the simpler UDP-like protocols attractrive for networked control systems.

To fully exploit UDP-like protocols it is necessary to have a controller/estimator design
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methodology for the general case when there is measurement noise and under partial state obser-

vation. Although the true LQG optimal controller for UDP-like protocols is time-varying and hard

to compute, we might choose to determine the optimal time-invariant LQG controller. Although

this is a suboptimal strategy, we believe that this controller can be determined explicitly rendering

implementation simple and computationally effective. We are exploring this possibility.

This paper clearly shows that different communication protocols can affect the overall

systems performance and that controller design needs to be substantially reconsidered. For example

the separation principle of LQG optimal control, a milestone in classical control theory on which

most modern controller design tools rely on, does not hold in general in networked control systems

and in particular in control application using large scale sensor networks. Another interesting out-

come of this work is that optimal controller design and communication protocol design are tightly

coupled. This means that also communication protocols need rethinking at least when they are

intended for real-time application such as networked control systems. Therefore, the solutions of

these problems will be of paramount importance for the design of future networked control systems.

4.7 Appendix

Lemma 4.7.1. Let S,T ∈M = {M ∈R
n×n|M ≥ 0}. Consider the operators ΦS(S,T ), and ΦT (S,T )

as defined in Equations (4.46) and (4.47), and consider the sequences Sk+1 = ΦS(Sk,Tk) and Tk+1 =

ΦT (Sk,Tk). Consider L∗
S,T = −(U +B′((1− ᾱ)S + ᾱT

)
B
)−1

B′SA. operators

Then the following facts are true:

(a)

ϒ(S,T,L) =(1− ν̄
1− ᾱ

)A′SA+W +
ν̄

1− ᾱ
(
A+(1−ᾱ)BL

)′
S
(
A+(1−ᾱ)BL

)
+ ν̄L′UL+ ν̄ᾱL′B′T BL

(b) ΦS(S,T ) = minL ϒ(S,T,L)

(c) 0 ≤ ϒ(S,T,L∗
S,T ) = ΦS(S,T ) ≤ ϒ(S,T,L) ∀L

(d) If Sk+1 > Sk and Tk+1 > Tk, then Sk+2 > Sk+1 and Tk+2 > Tk+1.

(e) If the pair (A,W 1/2) is observable and S = ΦS(S,T ) and T = ΦT (S,T ), then S > 0 and

T > 0.

Proof. Fact (a) can be easily checked by direct substitution.
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(b) If U is invertible then it is easy to verify by substitution that

ϒ(S,T,L) = ΦS(S,T )+ ν̄(L−L∗
S,T )′

(
U +B′((1− ᾱ)S + ᾱT

)
B
)
(L−L∗

S,T )

≥ ΦS(S,T )

(c) The nonnegativeness follows form the observation that ϒ(S,T,L) a sum of positive

semi-definite matrices. In fact (1− ν̄
1−ᾱ) = γ̄(1−ν̄)

ν̄+γ̄(1−ν̄) ≥ 0 and 0≤ ᾱ≤ 1. The equality ϒ(S,T,L∗
S,T ) =

ΦS(S,T ) can be verified by direct substitution. The last inequality follows directly from Fact (b).

(d)

Sk+2 = ΦS(Sk+1,Tk+1) = ϒ(Sk+1,Tk+1,L∗
Sk+1,Tk+1

)

≥ ϒ(Sk,Tk,L∗
Sk+1,Tk+1

) ≥ ϒ(Sk,Tk,L∗
Sk,Tk

)

= ΦS(Sk,Tk) = Sk+1

Tk+2 = ΦT (Sk+1,Tk+1) ≥ ΦT (Sk,Tk) = Tk+1

(e) First observe that S = ΦS(S,T ) ≥ 0 and T = ΦT (S,T ) ≥ 0. Thus, to prove that S,T >

0, we only need to establish that S,T are nonsingular. Suppose they are singular, the there exist

vectors 0 �= vs ∈ N (S) and 0 �= vt ∈ N (T ), i.e. Svs = 0 and T vt = 0, where N (·) indicates the null

space. Then

0 = v′sSvs = v′sΦS(S,T )vs = v′sϒ(S,T,L∗
S,T )vs

= (1− ν̄
1−ᾱ)v′sA′SAvs + v′sWvs +�

where � indicates other terms. Since all the terms are positive semi-definite matrices, this implies

that all the term must be zero:

v′sA′SAvs = 0 =⇒ SAvs = 0 =⇒ Avs ∈ N (S)

v′sWvs = 0 =⇒W 1/2vs = 0

As a result, the null space N (S) is A-invariant. Therefore, N (S) contains an eigenvector of A, i.e.

there exists u �= 0 such that Su = 0 and Au = σu. As before, we conclude that Wu=0. This implies

(using the PBH test) that the pair (A,W 1/2) is not observable, contradicting the hypothesis. Thus,

N (S) is empty, proving that S > 0. The same argument can be used to prove that also T > 0.

4.7.1 Proof of Theorem 4.5.2

(a)⇒(b) The main idea of the proof consists in proving convergence of several mono-

tonic sequences. Consider the sequences Vk+1 = ϒ(Vk,Zk, L̃) and Zk+1 = ΦT (Vk,Zk) with initial

conditions V0 = Z0 = 0. It is easy to verify by substitution that V1 = W + ν̄L̃′UL̃ ≥ 0 = V0 and

Z1 = W ≥ 0 = Z0. Lemma 4.7.1(a) shows that the operator ϒ(V,Z, L̃) is linear and monotonically
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increasing in V and Z, i.e.

(Vk+1 ≥Vk,Zk+1 ≥ Zk) ⇒ (Vk+2 ≥Vk+1,Zk+2 ≥ Zk+1). Also the operator ΦT (V,Z) is linear and

monotonically increasing in V and Z. Since V1 ≥ V0 and Z1 ≥ Z0, using an induction argument

we have that Vk+1 ≥ Vk,Zk+1 ≥ Zk for all time k, i.e. the sequences are monotonically increasing.

These sequences are also bounded, in fact (V0 ≤ S̃),(Z0 ≤ T̃ ) ⇒ (V1 = ϒ(0,0, L̃) ≤ ϒ(S̃, T̃ , L̃) =

S̃),(Z1 = ΦT (0,0) ≤ ΦT (S̃, T̃ ) = T̃ ) and the same argument can be inductively used to show that

Vk ≤ S̃ and Zk ≤ T̃ for all K. Consider now the sequences Sk,Tk as defined in the theorem ini-

tialized with S0 = T0 = 0. By direct substitution we find that S1 = W ≥ 0 = S0 and T1 = W ≥
0 = T0. By Lemma 4.7.1(d) follows that the sequences Sk,Tk are monotonically increasing. More-

over, by Lemma 4.7.1(c) it follows that (Sk ≤ Vk,Tk ≤ Zk) ⇒ (Sk+1 = ΦS(Sk,Tk) ≤ ϒ(Sk,Tk, L̃) ≤
ϒ(Vk,Zk, L̃) = Vk+1),Tk+1 = ΦT (Sk,Tk) ≤ ΦT (Vk,Zk) = Zk+1). Since this is verified for k = 0, it

inductively follows that (Sk ≤ Vk,Tk ≤ Zk) for all k. Finally since Vk,Zk are bounded, we have

that (Sk ≤ S̃,Tk ≤ T̃ . Since Sk,Tk) are monotonically increasing and bounded, it follows that

limk→∞ Sk = S∞ and limk→∞ Tk = T∞, where S∞,T∞ are semi-definite matrices. From this it easily fol-

lows that these matrices have the property S∞ = ΦS(S∞,T∞),T∞ = ΦT (S∞,T∞). Definite positiveness

of S∞ follows from Lemma 4.7.1(e) using the hypothesis that (A,W 1/2) is observable. The same

argument can be used to prove that T∞ > 0. Finally proof of uniqueness of solution and convergence

for all initial conditions S0,T0 can be obtained similarly to Theorem 1 in [69] and it is therefore

omitted.

(b)⇒(a) This part follows easily by choosing L̃ = L∗
S∞,T∞

, where L∗ is defined in Lemma 4.7.1.

Using Lemma 4.7.1(c) we have S∞ = ΦS(S∞,T∞) = ϒ(S∞,T∞, L̃), therefore the statement is verified

using S̃ = S∞ and T̃ = T∞.

4.7.2 Proof of Lemma 4.5.1

To prove the necessity condition it is sufficient to show that there exist some initial con-

ditions S0,T0 ≥ 0 for which the sequences Sk+1 = ΦS(Sk,Tk),Tk+1 = ΦT (Sk,Tk) are unbounded, i.e.

limk→∞ Sk = limk→∞ Tk = ∞. To do so, suppose that at some time-step k we have Sk ≥ skvv′ and

Tk ≥ tkvv′, where sk, tk > 0, and v is the eigenvector corresponding to the largest eigenvalue of A′,
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i.e. A′v = λmaxv and |λmax| = |A′| = |A|. Then we have:

Sk+1 = ΦS(Sk,Tk) ≥ ΦS(skvv′, tkvv′)

= min
L

ϒ(skvv′, tkvv′,L)

= min
L

(
skA′vv′A+W +2skν̄A′vv′BL+

+ν̄L′(U +B′((1− ᾱ)skvv′ + ᾱtkvv′
)
B
)
L
)

≥ min
L

(
sk|A|2vv′ +2skν̄λmaxvv′BL+

+ν̄L′B′((1− ᾱ)skvv′ + ᾱtkvv′
)
BL

)
= min

L

(
sk|A|2vv′ − |A|2ν̄s2

k

ξk
vv′ +

+ν̄ξk(λmaxs2
kI +

1
ξk

BL)′vv′(λmaxs2
kI +

1
ξk

BL)
)

≥ sk|A|2vv′ − |A|2ν̄s2
k

(1− ᾱ)sk + ᾱtk
vv′

= |A|2sk

(
1− ν̄sk

(1− ᾱ)sk + ᾱtk

)
vv′

= sk+1vv′

where I is the identity matrix and ξk = (1− ᾱ)sk + ᾱtk. Similarly we have:

Tk+1 = ΦT (Sk,Tk) ≥ ΦT (skvv′, tkvv′)

= (1− γ̄)tkA′vv′A+ γ̄skA′vv′A+W

≥ (1− γ̄)tk|A2|vv′ + γ̄sk|A|2vv′

= |A|2((1− γ̄)tk + γ̄sk)
)
vv′

= tk+1vv′

We can summarize the previous results as follows:

(Sk ≥ skvv′,Tk ≥ tkvv′) ⇒ (Sk+1 ≥ sk+1vv′,Tk+1 ≥ tk+1vv′)

sk+1 =φs(sk, tk) = |A|2sk

(
1− ν̄sk

(1− ᾱ)sk + ᾱtk

)
,

tk+1 =φt(sk, tk) = |A|2((1− γ̄)tk + γ̄sk)
)



86

Let us define the following sequences:

Sk+1 =ΦS(Sk,Tk), Tk+1 = ΦT (Sk,Tk), S0 = T0 = vv′

sk+1 =φs(sk, tk), tk+1 = φt(sk, tk), s0 = t0 = 1

S̃k = skvv′, T̃k = tkvv′

From the previous derivations we have that Sk ≥ S̃k,Tk ≥ T̃k for all time k. Therefore, it is sufficient

to find when the scalar sequences sk, tk diverges to find the necessary conditions. It should be evident

that also the operators φs(s, t),φt(s, t) are monotonic in their arguments. Also it should be evident

that the only fixed points of s = φs(s, t), t = φt(s, t) are s = t = 0. Therefore we should be find when

the origin is an unstable equilibrium point, since in this case limk→∞ sk, tk = ∞. Note that t = φt(s, t)

can be written as:

t = ΦT (s, t) = (1− γ̄)|A|2t + γ̄|A|2s

= ψ(s) =
γ̄|A|2s

1− (1− γ̄)|A|2
with the additional assumption 1− (1− γ̄)A2 > 0. A necessary condition for the stability of the

origin is that the origin of restricted map zk+1 = φ(zk,ψ(zk)) is stable. The restricted map is given

by:

zk+1 = |A|2zk

⎛⎝1− ν̄
zk

(1− ᾱ)zk + ᾱ γ̄|A|2
1−(1−γ̄)A2 zk

⎞⎠
= |A|2

⎛⎝1− ν̄

(1− ᾱ)+ ᾱ γ̄|A|2
1−(1−γ̄)A2

⎞⎠zk

= |A|2
(

1− ν̄(1− (1− γ̄)|A|2)
γ̄+ ν̄− γ̄ν̄− ν̄(1− γ̄)|A|2

)
zk

=
(

γ̄(1− ν̄)|A|2
γ̄+ ν̄− γ̄ν̄− ν̄(1− γ̄)|A|2

)
zk

This is a linear map and it is stable only if the term inside the parenthesis is smaller than unity, i.e.

(
γ̄(1− ν̄)|A|2

γ̄+ ν̄− γ̄ν̄− ν̄(1− γ̄)|A|2
)

< 1

γ̄(1− ν̄)|A|2 < γ̄+ ν̄− γ̄ν̄− ν̄(1− γ̄)|A|2

|A|2(γ̄+ ν̄−2γ̄ν̄) < γ̄+ ν̄− γ̄ν̄

which concludes the lemma.
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4.7.3 Proof of Lemma 4.5.2

The proof is constructive. In fact we find a control feedback gain L̃ that satisfies the

conditions stated in Theorem 4.5.2(a). Let L̃ = −ηB−1A where η > 0 is a positive scalar that is to

be determined. Also consider S = sI,T = tI, where I is the identity matrix and s, t > 0 are positive

scalars. Then we have

ϒ(sI, tI, L̃) = A′sA+W −2ν̄ηA′sA+ ν̄A′B−′
UB−1A+

+ν̄η2A′((1− ᾱ)s+ ᾱt
)
A

≤ |A|2
(

s−2ν̄sη+ ν̄
(
(1− ᾱ)s+ ᾱt

)
η2
)

I +wI

= ϕs(s, t,η)I (4.56)

ΦT (sI, tI) = γ̄A′sA+(1− γ̄)A′tA+W

≤ (
γ̄|A|2s+(1− γ̄)|A|2t

)
I +wI

≤ ϕt(s, t)I (4.57)

where w = |W + ν̄A′B−′
UB−1A| > 0 and I is the identity matrix. Let us consider the following

scalar operators and sequences:

ϕs(s, t,η) = |A|2(1−2ν̄η+ ν̄(1− ᾱ)η2)s+ ν̄ᾱη2t +w

ϕt(s, t) = γ̄|A|2s+(1− γ̄)|A|2t +w

sk+1 = ϕs(sk, tk,η), tk+1 = ϕt(sk, tk), s0 = t0 = 0

The operators are clearly monotonically increasing in s, t, and since s1 = ϕs(s0, t0,η) = w ≥ s0 and

t1 = ϕt(s0, t0) = w ≥ t0, it follows that the sequences sk, tk are monotonically increasing. If these

sequences are bounded, then they must converge to s̃, t̃. Therefore sk, tk are bounded if and only if

there exist s̃, t̃ > 0 such that s̃ = ϕs(s̃, t̃,η) and t̃ = ϕt(s̃, t̃). Let us find the fixed points:

t̃ = ϕt(s̃, t̃) ⇒
t̃ =

γ̄|A|2
1− (1− γ̄)|A|2 s̃+wt
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where wt
∆= w

1−(1−γ̄)|A|2 > 0, and we must have 1−(1− γ̄)|A|2 > 0 to guarantee that t̃ > 0. Substituting

back into the operator ϕs we have:

s̃ = |A|2(1−2ν̄η+ ν̄(1− ᾱ)η2)s̃+ ν̄ᾱη2 γ̄|A|2
1− (1− γ̄)|A|2 s̃+

+ν̄ᾱη2wt +w

= |A|2
(

1−2ν̄η+ ν̄
(
(1− ᾱ)+

γ̄ᾱ|A|2
1− (1− γ̄)|A|2

)
η2
)

s̃+w(η)

= |A|2
(

1−2ν̄η+ ν̄
γ̄+ ν̄− γ̄ν̄− ν̄(1− γ̄)|A|2

1− (1− γ̄)|A|2 η2
)

s̃+w(η)

= a(η)s̃+w(η)

where w(η) ∆= ν̄ᾱη2wt + w > 0. For a positive solution s̃ to exist, we must have a(η) < 1. Since

a(η) is a convex function of the free parameter η, we can try to increase the basin of existence of

solutions by choosing η∗ = argminηa(η), which can be found by solving da
dη(η∗) = 0 and is given

by:

η∗ =
1− (1− γ̄)|A|2

γ̄+ ν̄− γ̄ν̄− ν̄(1− γ̄)|A|2
Therefore a sufficient condition for existence of solutions are given by:

a(η∗) < 1

|A|2
(

1− ν̄
1− (1− γ̄)|A|2

γ̄+ ν̄− γ̄ν̄− ν̄(1− γ̄)|A|2
)

< 1(
γ̄(1− ν̄)|A|2

γ̄+ ν̄− γ̄ν̄− ν̄(1− γ̄)|A|2
)

< 1

which is the same bound for the necessary condition of convergence in Lemma 4.5.1.

If this condition is satisfied then limk→∞ sk = s̃ and limk→∞ tk = t̃. Let us consider now

the sequences S̄k = skI, T̄k = tkI, Sk+1 = ϒ(Sk,Tk, L̃) and Tk+1 = ΦT (Sk,Tk), where L̃ = −η∗B−1A,

S0 = T0 = 0, and sk, tk where defined above. These sequences are all monotonically increasing.

From Equations (4.56) and (4.57) it follows that (Sk ≤ skI,Tk ≤ tkI) ⇒ (Sk+1 =≤ sk+1I,Tk+1 ≤ tkI).

Since this is verified for k = 0 we can claim that Sk < s̃I and Tk < t̃I for all k. Since Sk,Tk are

monotonically increasing and bounded, then they must converge to positive semidefinite matrices

S̃, T̃ ≥ 0 which solve the equations S̃ = ϒ(S̃, T̃ , L̃) and T̃ = ΦT (S̃, T̃ ). Since by hypothesis the pair

(A,W 1/2) is observable, using similar arguments of Lemma 4.7.1(e), it is possible to show that

S̃, T̃ > 0. Therefore S̃, T̃ , L̃ satisfy the conditions of statement (a) Theorem 4.5.2, from which if

follows statement (b) of the same theorem. This implies that the sufficient conditions derived here

guarantee the claim of the lemma.


