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Tomorrow’s talk will focus on

C. Shannon

H. W. Bode Linear Time-Invariant 

Feedback Systems

Sensitivity to external

excitation

(Extracted from: A Mathematical Theory of Communication)

Maximum rate of 

reliable information

transfer



Information Theory Basic Quantities

{ }M,...,1=ZConsider a random variable z with alphabet

There is a representation where we assign                      bits to each z

 and the expected size becomes:
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Entropy is the expected size of the most bit-economic representation:

{ }M,...,1=ZConsider a random variable z with alphabet

( ) ( )[ ] log- zz zpEH =

There is a representation where we assign                      bits to each z

 and the expected size becomes:
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(valid on average for a large collection of variables)
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Entropy is the expected size of the most bit-economic representation:

{ }M,...,1=ZConsider a random variable z with alphabet
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Properties  of Entropy:
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Z can be represented as 
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uniformly distributed binary random variables 
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Properties  of Entropy:

Bit/representation
1
z Reconstruction
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Conditional Entropy
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( ) ( ) ( ) ( )[ ]21|22121 |log,|
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Conditional Entropy

Properties  of Entropy:

How much information does z2 carry about z1 ?

Bit/representation
1
z Reconstruction
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“Continuous” random variables

Assume that w is a random variable with alphabet n!=W

( ) ( )( )[ ]ww !!=
"!

fHh
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Differential entropy or “entropy density”:

!f

!

is a quantizer

This many elements unif. dist.unif. dist. volume

sensitivity of the

quantizer
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“Continuous” random variables

( ) ( ) ( )( ) ( ) ( )21121
0

21 |,lim, wwwwwww hhffII
def
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The function of the quantizer is to extract as “much” information as

possible from the continuous random variables.
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“Continuous” random variables

( ) ( )( ) ( ) ( )wzzwzwz |,lim,
0

hhfII !== "
#"

( ) ( ) ( )( ) ( ) ( )21121
0

21 |,lim, wwwwwww hhffII
def

!== ""
#"

“Continuous” and discrete random variables

The function of the quantizer is to extract as “much” information as

possible from the continuous random variables.
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Properties:

( ) 0),(, != wzzw II

I (Positivity)
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Properties:

( ) ),|()|(), ()),,( (|, vwzvzzvzvwvzw hhIII !=!=

Given v, how much more information about z can I get from w?  

( ) 0),(, != wzzw II

I (Positivity)

II (Kolmogorov’s Formula)
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Properties:

( ) 0),(, != wzzw II

( ) ),|()|(), ()),,( (|, vwzvzzvzvwvzw hhIII !=!=

Given v, how much more information about z can I get from w?  

I (Positivity)

II (Kolmogorov’s Formula)

III (maximum entropy bounds)
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Equality is achieved if        is Gaussian
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Equality is achieved if          are uncorrelated( )iz
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Important Aspects about (differential) entropy and Mutual Information

( ) ( ))(|)(| bgbgfahbah o!"
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Equality under 

Invertible f and g

Equality if g is 

injective

Cannot Reduce

Uncertainty without

more information

Limit on the ability

To send Information

Limit on the ability

to reduce 

uncertainty

data processing inequality
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Definition in terms of rates:

Consider two “continuous” or discrete stochastic processes:
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(Channel coding Theorem)
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Channel Capacity
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(Channel coding Theorem)

Given a (constrained) set of stochastic processes       , channel capacity is given by:
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quantizer

with M levels

Examples: Quantizer with M levels
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000111101011…

Bit stream
000111101011…

Bit stream
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Information capacity is the supremum of the bit-rate for which information

can be transmitted through a medium:

Examples: Gaussian channel in more detail
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Definition in terms of rates:

Consider two “continuous” or discrete stochastic processes:
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Example of application

Consider the following scalar linear and time-invariant system:

( ) ( ) ( )kkak uxx +=+1 0!k

( )0x is a random variable uniformly distributed in the interval [ ]1,1!

1>a



Example of application

Consider the following scalar linear and time-invariant system:

( ) ( ) ( )kkak uxx +=+1 0!k

( )0x is a random variable uniformly distributed in the interval [ ]1,1!

We will prove that:
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Proof: ( ) ( ) ( )kkak uxx +=+1

The state can be computed as:

( ) ( ) ( )kk kfak uxx ,0 +=

( ) ( ) ( )kk kfka uxx ,
~

0 !=! ( ) ( )kkk kfakf uu ,,
~ !

!=

can be viewed as an estimate of ( )0x

Example of application



Proof:
( ) ( ) ( )kkak uxx +=+1

The state can be computed as:

( ) ( ) ( )kk kfak uxx ,0 +=
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can be viewed as an estimate of ( )0x
Now, using the formula for mutual information:
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Proof (Continuation):
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Now, using the formula for mutual information:
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Proof (Continuation):
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Proof (Continuation):
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The previous analysis leads to an alternative proof for the following result of 

Tatikona and Mitter (00):
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Arbitrary
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If the feedback interconnection is second moment stable then:
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