

Fundamental limits of feedback: an information theoretic viewpoint

Basic results and definitions of information theory

Nuno C. Martins

nmartins@isr.umd.edu

Department of Electrical and Computer Engineering Institute for Systems Research University of Maryland, College Park

Connections II, CALTECH August 14th, 2006

Tomorrow's talk will focus on

H. W. Bode

Linear Time-Invariant Feedback Systems Sensitivity to external excitation

Maximum rate of reliable information transfer

C. Shannon

(Extracted from: A Mathematical Theory of Communication)

Entropy

Consider a random variable **z** with alphabet
$$\mathbf{Z} = \{1, ..., M\}$$

There is a representation where we assign $\left[-\log p_z(z)\right]$ bits to each z and the expected size becomes:

$$E\left[\left[-\log p_z(\mathbf{z})\right]\right]$$

Entropy

Consider a random variable **z** with alphabet
$$\mathbf{Z} = \{1, ..., M\}$$

There is a representation where we assign $\left[-\log p_z(z)\right]$ bits to each z and the expected size becomes:

$$E\left[\left[-\log p_z(\mathbf{z})\right]\right]$$

Entropy is the expected size of the most bit-economic representation:

$$H(\mathbf{z}) = E[-\log p_z(\mathbf{z})]$$

(valid on average for a large collection of variables)

Entropy

Consider a random variable **z** with alphabet
$$\mathbf{Z} = \{1, ..., M\}$$

There is a representation where we assign $\left[-\log p_z(z)\right]$ bits to each z and the expected size becomes:

$$E\left[\left[-\log p_z(\mathbf{z})\right]\right]$$

Entropy is the expected size of the most bit-economic representation:

$$H(\mathbf{z}) = -\sum_{z \in \mathbf{Z}} p_z(z) \log p_z(z)$$

Properties of Entropy: $H(\mathbf{z}) \ge 0$

Z can be represented as $2^{H(z)}$ uniformly distributed binary random variables

Measure of randomness

Properties of Entropy:

Conditional Entropy

$$H(\mathbf{z}_1 | \mathbf{z}_2) = H(\mathbf{z}_1, \mathbf{z}_2) - H(\mathbf{z}_2) = E\left[-\log p_{Z_1|Z_2}(\mathbf{z}_1 | \mathbf{z}_2)\right]$$

Properties of Entropy:

Conditional Entropy

$$H(\mathbf{z}_1 | \mathbf{z}_2) = H(\mathbf{z}_1, \mathbf{z}_2) - H(\mathbf{z}_2) = E\left[-\log p_{Z_1|Z_2}(\mathbf{z}_1 | \mathbf{z}_2)\right]$$

How much information does \mathbf{z}_2 carry about \mathbf{z}_1 ?

$$I(\mathbf{z}_1, \mathbf{z}_2) = H(\mathbf{z}_1) - H(\mathbf{z}_1 | \mathbf{z}_2)$$

"Continuous" random variables

Assume that **w** is a random variable with alphabet $W = \Re^n$

Differential entropy or "entropy density":

"Continuous" random variables

$$I(\mathbf{w}_1, \mathbf{w}_2) \stackrel{\text{def}}{=} \lim_{\Delta \to 0} I(f_{\Delta}(\mathbf{w}_1), f_{\Delta}(\mathbf{w}_2)) = h(\mathbf{w}_1) - h(\mathbf{w}_1 | \mathbf{w}_2)$$

The function of the quantizer is to extract as "much" information as possible from the continuous random variables.

"Continuous" random variables

$$I(\mathbf{w}_1, \mathbf{w}_2) \stackrel{\text{def}}{=} \lim_{\Delta \to 0} I(f_{\Delta}(\mathbf{w}_1), f_{\Delta}(\mathbf{w}_2)) = h(\mathbf{w}_1) - h(\mathbf{w}_1 | \mathbf{w}_2)$$

The function of the quantizer is to extract as "much" information as possible from the continuous random variables.

"Continuous" and discrete random variables

$$I(\mathbf{z}, \mathbf{w}) = \lim_{\Delta \to 0} I(f_{\Delta}(\mathbf{z}), \mathbf{w}) = h(\mathbf{z}) - h(\mathbf{z} | \mathbf{w})$$

Properties:

I (Positivity)

$$I(\mathbf{w}, \mathbf{z}) = I(\mathbf{z}, \mathbf{w}) \ge 0$$

Properties:

I (Positivity) $I(\mathbf{w}, \mathbf{z}) = I(\mathbf{z}, \mathbf{w}) \ge 0$

(Kolmogorov's Formula)

Given **v**, how much more information about **z** can I get from **w**? $I(\mathbf{w}, \mathbf{z} | \mathbf{v}) = I((\mathbf{w}, \mathbf{v}), \mathbf{z}) - I(\mathbf{v}, \mathbf{z}) = h(\mathbf{z} | \mathbf{v}) - h(\mathbf{z} | \mathbf{w}, \mathbf{v})$ **Properties:**

I (Positivity) $I(\mathbf{w}, \mathbf{z}) = I(\mathbf{z}, \mathbf{w}) \ge 0$

II (Kolmogorov's Formula)

Given v, how much more information about z can l get from w? $I(\mathbf{w}, \mathbf{z} \mid \mathbf{v}) = I((\mathbf{w}, \mathbf{v}), \mathbf{z}) - I(\mathbf{v}, \mathbf{z}) = h(\mathbf{z} \mid \mathbf{v}) - h(\mathbf{z} \mid \mathbf{w}, \mathbf{v})$ III (maximum entropy bounds) $H(\mathbf{a}) \le \log(\# \mathbf{A})$ $h(\mathbf{z}^{k}) \le \frac{1}{2} \log((2\pi e)^{k} |\Sigma_{z^{k}}|) \le \frac{1}{2} \sum_{i=1}^{k} \log(2\pi e \sigma_{z(i)}^{2})$ Equality is achieved if \mathbf{z}^{k} is Gaussian Equality is achieved if $\mathbf{z}(i)$ are uncorrelated Important Aspects about (differential) entropy and Mutual Information

Equality if g is
$$h(a | b) \le h(a - f \circ g(b) | g(b))$$

injective

Cannot Reduce Uncertainty without more information

Equality under ______ Invertible f and g

►
$$I(a,b) \ge I(g(a), f(b))$$

data processing inequality

Limit on the ability To send Information

$$h(a-f\circ g(b)\,|\,g(b)) \geq h(a) - I\bigl(a,b\bigr)$$

Limit on the ability to reduce uncertainty Definition in terms of rates:

Consider two "continuous" or discrete stochastic processes:

(Information rate)

$$\mathbf{w}^{k} = \left(\mathbf{w}(0), \dots, \mathbf{w}(k)\right)$$
$$\mathbf{z}^{k} = \left(\mathbf{z}(0), \dots, \mathbf{z}(k)\right)$$

 $I_{\infty}(\mathbf{w}, \mathbf{z}) = \lim_{k \to \infty} \frac{I(\mathbf{z}^k, \mathbf{w}^k)}{k}$ Maximum reliable bit-rate.

Channel Capacity

Given a (constrained) set of stochastic processes S_w , channel capacity is given by:

$$C = \sup_{\mathbf{w} \in S_{\mathbf{w}}} \lim_{k \to \infty} \frac{I(\mathbf{z}^{k}, \mathbf{w}^{k})}{k} = \sup_{memoryless} \sup_{p_{\mathbf{w}(k)}} I(\mathbf{z}(k), \mathbf{w}(k))$$

Examples: Gaussian channel in more detail

Information capacity is the supremum of the bit-rate for which information can be transmitted through a medium:

If N(k) represents the total number of bits transmitted up to time k then we know that

$$\begin{cases} \sup_{k} \frac{N(k)}{k} \le \frac{1}{2} \log_2 \left(1 + \frac{\sigma_w^2}{\sigma_v^2} \right) & \longleftarrow \text{ Shannon Capacity} \\ P[Error(k)] \to 0 \end{cases}$$

Definition in terms of rates:

Consider two "continuous" or discrete stochastic processes:

$$\mathbf{w}^{k} = \left(\mathbf{w}(0), \dots, \mathbf{w}(k)\right)$$
$$\mathbf{z}^{k} = \left(\mathbf{z}(0), \dots, \mathbf{z}(k)\right)$$

(Information rate)

$$I_{\infty}(\mathbf{w},\mathbf{z}) = \lim_{k \to \infty} \frac{I(\mathbf{z}^k,\mathbf{w}^k)}{k}$$

 $h_{\infty}(\mathbf{z}) = \lim_{k \to \infty} \frac{h(\mathbf{z}^k)}{k}$

Maximum reliable bit-rate: used to define capacity.

(Entropy rate)

$$h_{\infty}(\mathbf{z}) \leq \frac{1}{4\pi} \int_{-\pi}^{\pi} \log(2\pi e F_{z}(\omega)) d\omega$$

Equality is achieved if \mathbf{z} is Gaussian

Consider the following scalar linear and time-invariant system:

$$\mathbf{x}(k+1) = a\mathbf{x}(k) + \mathbf{u}(k) \quad k \ge 0 \quad |a| > 1$$

$$\mathbf{x}(0) \text{ is a random variable uniformly distributed in the interval } [-1,1]$$

Consider the following scalar linear and time-invariant system:

$$\mathbf{x}(k+1) = a\mathbf{x}(k) + \mathbf{u}(k) \quad k \ge 0 \quad |a| > 1$$

$$\mathbf{x}(0) \text{ is a random variable uniformly distributed in the interval } [-1,1]$$

We will prove that:

$$\sup_{k} E[\mathbf{x}^{2}(k)] < \beta \implies \lim_{k \to \infty} \frac{I(\mathbf{u}^{k}, \mathbf{x}(0))}{k} \ge \log|a|$$

Proof: $\mathbf{x}(k+1) = a\mathbf{x}(k) + \mathbf{u}(k)$

The state can be computed as:

$$\mathbf{x}(k) = a^k \mathbf{x}(0) + f(k, \mathbf{u}^k)$$

$$a^{-k}\mathbf{x}(k) = \mathbf{x}(0) - \widetilde{f}(k, \mathbf{u}^{k}) \qquad \widetilde{f}(k, \mathbf{u}^{k}) = -a^{-k}f(k, \mathbf{u}^{k})$$

can be viewed as an estimate of $\mathbf{x}(0)$

Proof:

$$\mathbf{x}(k+1) = a\mathbf{x}(k) + \mathbf{u}(k)$$

The state can be computed as:

$$\mathbf{x}(k) = a^k \mathbf{x}(0) + f(k, \mathbf{u}^k)$$

$$a^{-k}\mathbf{x}(k) = \mathbf{x}(0) - \tilde{f}(k, \mathbf{u}^{k}) \qquad \tilde{f}(k, \mathbf{u}^{k}) = -a^{-k}f(k, \mathbf{u}^{k})$$

can be viewed as an estimate of $\mathbf{x}(0)$

$$I(\mathbf{x}(0), \widetilde{f}(k, \mathbf{u}^{k})) = h(\mathbf{x}(0)) - h(\mathbf{x}(0) | \widetilde{f}(k, \mathbf{u}^{k}))$$
$$I(\mathbf{x}(0), \widetilde{f}(k, \mathbf{u}^{k})) = 2 - h(\mathbf{x}(0) - \widetilde{f}(k, \mathbf{u}^{k})) \widetilde{f}(k, \mathbf{u}^{k})) \ge 2 - h(\mathbf{x}(0) - \widetilde{f}(k, \mathbf{u}^{k}))$$

$$a^{-k}\mathbf{x}(k) = \mathbf{x}(0) - \widetilde{f}(k, \mathbf{u}^{k}) \qquad \sup_{k} E[\mathbf{x}^{2}(k)] < \beta$$

$$I\left(\mathbf{x}(0), \widetilde{f}\left(k, \mathbf{u}^{k}\right)\right) = h(\mathbf{x}(0)) - h\left(\mathbf{x}(0)\right) | \widetilde{f}\left(k, \mathbf{u}^{k}\right)\right)$$
$$I\left(\mathbf{x}(0), \widetilde{f}\left(k, \mathbf{u}^{k}\right)\right) = 2 - h\left(\mathbf{x}(0) - \widetilde{f}\left(k, \mathbf{u}^{k}\right)\right) | \widetilde{f}\left(k, \mathbf{u}^{k}\right)\right) \ge 2 - h\left(\mathbf{x}(0) - \widetilde{f}\left(k, \mathbf{u}^{k}\right)\right)$$

$$a^{-k}\mathbf{x}(k) = \mathbf{x}(0) - \widetilde{f}(k, \mathbf{u}^{k}) \qquad \sup_{k} E[\mathbf{x}^{2}(k)] < \beta$$

Now, using the formula for mutual information:

$$I\left(\mathbf{x}(0), \widetilde{f}\left(k, \mathbf{u}^{k}\right)\right) = h(\mathbf{x}(0)) - h\left(\mathbf{x}(0)\right) | \widetilde{f}\left(k, \mathbf{u}^{k}\right)\right)$$
$$I\left(\mathbf{x}(0), \widetilde{f}\left(k, \mathbf{u}^{k}\right)\right) = 2 - h\left(\mathbf{x}(0) - \widetilde{f}\left(k, \mathbf{u}^{k}\right)\right) | \widetilde{f}\left(k, \mathbf{u}^{k}\right)\right) \ge 2 - h\left(\mathbf{x}(0) - \widetilde{f}\left(k, \mathbf{u}^{k}\right)\right)$$

Now notice that:

$$h(\mathbf{x}(0) - \tilde{f}(k, \mathbf{u}^{k})) \leq \frac{1}{2} \log \left(2\pi e E\left[\left(\mathbf{x}(0) - \tilde{f}(k, \mathbf{u}^{k})\right)\right]\right) \leq \frac{1}{2} \log \left(2\pi e a^{-2k}\beta\right)$$

$$a^{-k}\mathbf{x}(k) = \mathbf{x}(0) - \widetilde{f}(k, \mathbf{u}^{k}) \qquad \sup_{k} E[\mathbf{x}^{2}(k)] < \beta$$

$$I(\mathbf{x}(0), \widetilde{f}(k, \mathbf{u}^{k})) = h(\mathbf{x}(0)) - h(\mathbf{x}(0) | \widetilde{f}(k, \mathbf{u}^{k}))$$

$$a^{-k}\mathbf{x}(k) = \mathbf{x}(0) - \widetilde{f}(k, \mathbf{u}^{k}) \qquad \sup_{k} E[\mathbf{x}^{2}(k)] < \beta$$

$$I(\mathbf{x}(0), \widetilde{f}(k, \mathbf{u}^{k})) = h(\mathbf{x}(0)) - h(\mathbf{x}(0) | \widetilde{f}(k, \mathbf{u}^{k}))$$
$$h(\mathbf{x}(0) - \widetilde{f}(k, \mathbf{u}^{k})) \leq \frac{1}{2} \log(2\pi e a^{-2k}\beta)$$

$$a^{-k}\mathbf{x}(k) = \mathbf{x}(0) - \widetilde{f}(k, \mathbf{u}^{k}) \qquad \sup_{k} E[\mathbf{x}^{2}(k)] < \beta$$

$$I(\mathbf{x}(0), \widetilde{f}(k, \mathbf{u}^{k})) = h(\mathbf{x}(0)) - h(\mathbf{x}(0) | \widetilde{f}(k, \mathbf{u}^{k}))$$

$$h(\mathbf{x}(0) - \widetilde{f}(k, \mathbf{u}^{k})) \leq \frac{1}{2} \log(2\pi e a^{-2k}\beta)$$

$$\lim_{k \to \infty} \frac{I(\mathbf{x}(0), \widetilde{f}(k, \mathbf{u}^{k}))}{k} \geq \log|a|$$
data processing inequality:
$$\lim_{k \to \infty} \frac{I(\mathbf{x}(0), \mathbf{u}^{k})}{k} \geq \log|a|$$

The previous analysis leads to an alternative proof for the following result of Tatikona and Mitter (00):

If the feedback interconnection is second moment stable then:

$$\lim_{k \to \infty} \frac{I(\mathbf{x}(0), \mathbf{u}^k)}{k} \ge \sum_{unstable} \log |pole_i|$$