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Tomorrow’s talk will focus on
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(Extracted from: A Mathematical Theory of Communication)



Information Theory Basic Quantities

Entropy

Consider a random variable z with alphabet Z = {1,,,,,M}

There is a representation where we assign |'_ log p. (Z)] bits to each z
and the expected size becomes:

E[[-log p.(z)] ]



Information Theory Basic Quantities

Entropy

Consider a random variable z with alphabet Z = {1,,,,,M}

There is a representation where we assign |'_ log p. (Z)] bits to each z
and the expected size becomes:

E[[-log p. ()] ]
Entropy is the expected size of the most bit-economic representation:

H(z)= E| -log p. (@) ]

(valid on average for a large collection of variables)




Information Theory Basic Quantities

Entropy

Consider a random variable z with alphabet Z = {1,,,,,M}

There is a representation where we assign |'_ log p. (Z)] bits to each z
and the expected size becomes:

E[[-log p.(z)] ]

Entropy is the expected size of the most bit-economic representation:

H)=- p.(Yogp. )

z&EZ




Information Theory Basic Quantities

Properties of Entropy:

H(Z)ZO

H
Z can be represented as 2 (2) uniformly distributed binary random variables

42.(2)
H(z)=0

<

Measure of randomness

4 p.(z)

<

A

p.(z)

H(z)=log2M




Information Theory Basic Quantities

Conditional Entropy

Properties of Entropy:

H(Z1 |z, )= H(Zlazz )_ H(Zz )= E[_ 10gp21|22 (Z1 |z, )_

Bit/representation

H(Zl |Z2)

>

Reconstruction

— Z,

?

Z,



Information Theory Basic Quantities

Properties of Entropy:

Conditional Entropy

H(Z1 |z, )= H(Zlazz )_ H(Zz )= E[_ 10gp21|22 (Z1 |z, )_

Bit/representation

H(Zl |Z2)

>

Reconstruction

— Z,

?

Z,

How much information does z, carry about z, ?

I(ZI,ZZ)= H(Zl)_H(Zl |Z2)



Information Theory Basic Quantities

“Continuous” random variables

Assume that w is a random variable with alphabet \\/ = ${”

Differential entropy or “entropy density”:

h(w) _ lim[AZH(fA W)

/ A—>0 \

unif. dist. volume This many elements unif. dist.

fA is a quantizer

N
\A sensitivity of the

quantizer




Information Theory Basic Quantities

“Continuous” random variables

1v,ow, )= tim 77, O, ) £, 0w )= v, )= how, [ w,)

The function of the quantizer is to extract as “much” information as
possible from the continuous random variables.



Information Theory Basic Quantities

“Continuous” random variables

1v,ow, )= tim 77, O, ) £, 0w )= v, )= how, [ w,)

The function of the quantizer is to extract as “much” information as
possible from the continuous random variables.

“Continuous” and discrete random variables

I(Z,W)= lAiL%I(fA (Z)W)= h(z)— h(z | W)



Information Theory Basic Quantities

Properties:

I (Positivity)

[(W,Z)= [(z,w)=0



Information Theory Basic Quantities

Properties:

I (Positivity)

[(W,Z)= [(z,w)=0

II (Kolmogorov’s Formula)

Given v, how much more information about z can | get from w?

I(w,z|v)=I1((w,v),z)-1(V,z) = h(z|v)-h(z| W, V)



Information Theory Basic Quantities

Properties:

I (Positivity)

[(W,Z)= [(z,w)=0

II (Kolmogorov’s Formula)

Given v, how much more information about z can | get from w?
I(w,z|v)=I1((w,v),z)-1(V,z) = h(z|v)-h(z| W, V)

III (maximum entropy bounds)
H(a)s 1og(# A)

hiz! %s %mg((zne)f‘ ) %glog@neaf(i))

Equality is achieved if z" is Gaussian /A

S,

Equality is achieved if z(i) are uncorrelated



Information Theory Basic Quantities

Important Aspects about (differential) entropy and Mutual Information

- Cannot Reduce
Egua!lty if gis I h(a | b)s h(a — fog(b)] g(b)) Uncertainty without
injective more information

Equality under I(a.p)s I(o(a b Limit on the ability
Invertible f and g > ( ’ )_ (g( ),/ ( )) To send Information
data processing inequality

Limit on the ability
ha- fog)|g®)=h(a)-1(a,b)  toreduce

uncertainty



Information Theory Basic Quantities

Definition in terms of rates:

Consider two “continuous” or discrete stochastic processes:

(Information rate)

w’ = (w(0)...,w(k))
z" = (2(0),...,z(k))

] Zk , Wk ) Maximum reliable
bit-rate.

]OO(W,Z)= lim

...00011101...

—>

Encoder

W

k—o0

(Channel coding Theorem)

» Channel

p(w(k)|z(k)

Decoder

...00011101...
>




Channel Coding Theorem

Channel Capacity

_ zk,wk) Rate of reliable
(Information rate) 1, (W, Z)= lim transmission

k—o0 k

...00011101... W Z ...00011101...

—» Encoder —” Channel [—* Decoder —*

p(wk)|z(k)

(Channel coding Theorem)

Given a (constrained) set of stochastic processes SW, channel capacity is given by:

k k
C = sup lim > ) sup I(z(k), w(k))

memoryless
wes, k= k Y P



Channel Coding Theorem

Examples: Quantizer with M levels

Bit stream Bit stream

000111101011... L— 000111101011...
— ENC >_T>>DEC—>

quantizer
with M levels

C=log, M

Examples: Gaussian channel

---------------- . t
Bit stream v fl Bit stream

w(k): 2(k) 000111101011...
000111101011... ENC LA SR 7 B

__________________

Gaussian
Channel

1 o’ |
C = _10g2 1+ —3’ <— Shannon Capacity

2 O

v




Channel Coding Theorem

Examples: Gaussian channel in more detail

Information capacity is the supremum of the bit-rate for which information
can be transmitted through a medium:

B ( ) ’ tl i (k) oooﬁlj :gfc?ﬂ
000111101011... wik )  z(k
— ENC > »&—>—> DEC —>
Gaussian
Channel

If N(k)represents the total number of bits transmitted up to time k then we know that

Nk) 1 o’
sup IE )S510g2(1+0—g) <— Shannon Capacity

Sk

\P[Error (k )]e 0

v




Rates and bounds

Definition in terms of rates:

Consider two “continuous” or discrete stochastic processes:

w’ = (w(0)...,w(k))
z" = (2(0),...,z(k))

k k . .
]Z ,W ) Maximum reliable

(Information rate) ]OO (W, Z ) = lim bit-rate: used to
k—o k define

capacity.

(Entropy rate) hoo (Z)= ;!fim h(zk )

h(z ); ﬁ }J;log(ZneFZ ()Mo

Equality is achieved if Z is Gaussian



Example of application

Consider the following scalar linear and time-invariant system:

x(k +1)=ax(k)+uk) k=0 |o>1

X(O) is a random variable uniformly distributed in the interval [— 1,1]



Example of application

Consider the following scalar linear and time-invariant system:

x(k +1)=ax(k)+ulk) k=0 |a>1

X(O) is a random variable uniformly distributed in the interval [— 1,1]

We will prove that:

supEL (k)J</3’ nd hm[(u X(O))>10g‘a‘

k—




Example of application

Proof:
o0 x(k +1)= ax(k )+ u(k)
The state can be computed as:

x(k)= akx(0)+ f(k,uk)

a*x(k)=x0)- 7))  Flu)=-a*fut)

can be viewed as an estimate of X(O)



Example of application

Proof:

X(k + 1)= ax(k)+ u(k)
The state can be computed as:

X(k)= akx(0)+ f(k,uk)

a*x(k)=x0)- 7))  Flu)=-a*fut)

can be viewed as an estimate of X(O)

Now, using the formula for mutual information:

160) 7wt ) hx(0))- 1&0)] 7' )
16O) 7, u )= 2 - n&0)- 7, u* ) 76,0 e 2 - nk(0)- 7, u*)



Example of application

Proof (Continuation):
xk)=x0)-7Gut)  swENE)Ep

Now, using the formula for mutual information:

160) 7 e, ut )= 1(x(0))- nO)] 7. u* )
160) 76 u* - 2-n©)- 7l ) 7wt e 2 - na(0)- 7lk.u")



Example of application

Proof (Continuation):
xk)=x0)-7Gut)  swENE)Ep

Now, using the formula for mutual information:

160) 7 e, ut )= 1(x(0))- nO)] 7. u* )
160) 76 u* - 2-n©)- 7l ) 7wt e 2 - na(0)- 7lk.u")

Now notice that:

hG&(O)— f(k,uk ))s %log(%reE[Gx(O)— ?(k,uk )) ] ) < %log(Znea'Zk[a’ ]



Example of application

Proof (Continuation):
xk)=x0)-7Gut)  swENE)Ep

Now, using the formula for mutual information:

1601 7 u* )= (x(0)- 1&(0) 7. u*)



Example of application

Proof (Continuation):
“x(k)=x(0)= 7. u* sup E|x* (k) k B
a"x\k)=x(0)- f\k,u p
k
Now, using the formula for mutual information:

160} 7 .t Y- 1x(0))- ()1 7.’ )
hG&(O)— ?(k,llk ))s %log(2nea"2k[3’ )



Example of application

Proof (Continuation):
“*x(k )= 7. u sup E|x* (k) k
a "x\k)=x(0)- flk,u p
k
Now, using the formula for mutual information:

160} 7 .t Y- 1x(0))- ()1 7.’ )
hG&(O)— ?(k,llk ))s %log(2nea‘2"[g’ )

z(x<o>§(k,uk))

lim > log‘a‘

k—

data processing inequality: - lim ! X(O)’ Uk )2 log‘a‘
k

k—




Example of application

The previous analysis leads to an alternative proof for the following result of
Tatikona and Mitter (00):

XEO) y
€ P >

Arbitrary |4
causal

If the feedback interconnection is second moment stable then:

Il X(O)uk)

lim > E log‘ polel.‘

koo k unstable




