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Why Are Stochastic Models Needed”?

Much of the mathematical modeling of gene networks represents gene
expression deterministically

Deterministic models describe macroscopic behavior; but many cellular
constituents are present in small numbers

Considerable experimental evidence indicates that significant stochastic
fluctuations are present

There are many examples when deterministic models are not adequate




Modeling Gene Expression

-

protein

£¢ .
T

Deterministic model

d[mRN A]

= —y[mRNA] + kr

dt
d[protein]

o = —yplprotein] + kp[mRN A]

Stochastic model

e Probability a single mRNA is transcribed in
time dt is k,dt.

e Probability a single mRNA is degraded in
time dt is (#mRNA) - ~,.dt




Fluctuations at Small Copy Numbers
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Coefficient of variation(n) =

*  Deterministic steady-state equals stochastic mean
*  Coefficient of variation goes as 1/y/mean
*  When mean is large, the coefficient of variation is (relatively) small




Intrinsic Variability in Gene Expression

Impact of variability

* Noise propagates through the
network

* |ts amount depends on
» # of molecules
» stoichiometry
» regulation
> ...

* Sometimes it is suppressed;
other times it is exploited

e Deterministic models are not

Source of variability at adequate

cellular level....

« Small # of molecules

“Intrinsic noise”
« Random events




Stochastic Influences on

Phenotype

Fingerprints of identical twins

J. Raser and E. O’Shea, Science, 1995.

Cc, the first cloned cat and her genetic mother




=Xploiting the Noise

Number of Molecules of P

50 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90
Time

Johan Paulsson , Otto G. Berg , and Mans Ehrenberg, PNAS 2000

- Stochastic mean value different from deterministic steady state
* Noise enhances signal!




Noise Induced Oscillations

Circadian rhythm

2500

== deterministic
= stochastic

Vilar, Kueh, Barkai, Leibler, PNAS 2002

50 100 150 200 250 300
Time (hours)

* Oscillations disappear from deterministic model after a small reduction in deg. of repressor
* (Coherence resonance) Regularity of noise induced oscillations can be manipulated
by tuning the level of noise [ElI-Samad, Khammash]




Pl Stochastic Switch

* Pili enable uropathogenic E. coli to attach to epithelial cell receptors

» Plays an essential role in the pathogenesis of urinary tract infections

e E. coli expresses two states ON (piliated) or OFF (unpiliated)

* Piliation is controlled by a stochastic switch that involves random
molecular events




A Simplified Pap Switch Model

Lrp leucine regulatory protein

One gene g

Site 2

* Lrp can (un)bind either or both of two binding sites
* A (un)binding reaction is a random event







Piliation takes place
if gene 1s ON at specific
time: T




|dentical Genotype Leads to

Different

Phenotype




Stochastic Chemical Kinetics

® Mathematical Formulation
® The Chemical Master Equation (CME)
® Monte-Carlo Simulations of the CME




Stochastic Chemical Kinetics

e (N-species) Start with a chemically reacting system containing N distinct
reacting species {S1,...,Sn}.

e The state of the system is described by the integer vector x = (z1,...,2zn)’:
x; IS the population of species ;.

A

population of S5

population of Sq
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e (M-reactions) The system’s state
can change through any one of
M reaction: Ry, :p e {1,2,...,M}..

Example: Rj ¢ — Sq
Ro S1 4+ 5> — 51
Rz 51— ¢

o (State transition) An R, re-

action causes a state transition
from X to X+ s.

(2 |

Stoichiometry matrix:

population of Sq

Sequence: i» Ry Ry Ro Rz Ho Ho

S={31 S92




e (Transition probability) Suppose the system is in state x.

‘The probability that R, is the next reaction and that it will occurs within
the next dt time units is given by a,(X)dt.

If R, is the monomolecular reaction S; — products, there exists some constant
cy such that a,(X) = cuz;.

cy 1S numerically equal to the reaction rate constant k£, of conventional deter-
ministic chemical Kinetics.

If Ry, is the bimolecular reaction §5; 4+ 5; — products, there exists a constant ¢,
such that au(X) = cux;x;.

cy is equal to k,/S€2, where k, is the reaction rate constant, and €2 is the
reaction volume




The Chemical Master Equation

We are interested in p(X,t), the probability that the chem-
iIcal system will be in state x at time, t.

The time evolution of p(X,t) is described by the Chemical
Master Equation:

The Chemical Master Equation (CME):

M M
p(X;t) = —p(x;t) > ap(X)+ > p(X—su;t)au(X—sy)




Challenges in the Solution of the CM

* The state space is potentially HUGE! Eukaryotic Cell

~ 104 different proteins
~ 10° copies/proteins (avg.)

~ 100000 states!

N species
Up to n copies/species

Number of states: nv -
Proteins bind together to create

even more species!

e \ery often transitions have vastly different time-scales

¢ [la(x)[| — oo as [|x]| — oo




—xploiting Underlying Biology

* Modularity: Small subsystems can often be isolated
e.g. heat-shock has ~7 key interacting molecules

» Specificity: Each protein binds to one or very few other molecules

N=23 (heat-shock)
4
N << 10 N=63 (pap switch)

* Many “key” molecules exist in small numbers: genes, mRNAs,

signaling and regulatory proteins, ...
e.qg. liver cells, 97% of mMRNAs are present at ~10 copies/cell.

e Key molecules constitute many of the compound species:
e.g. methylated DNA

For many species: n << 10°




Monte Carlo SIm

Jations: The Stochastic

Simulation Algortr

hm (SSA)

e This approach constructs numerical realizations of x(t) and then histogram-
ming or averaging the results of many realizations (Gillespie 1976).

e Start by computing the reaction probability density function Px(r, u):

Px (7, ) is the joint probability density function of the two random

variables:

— “time to the next reaction” (7);

— “index of the next reaction” (u).

M
Py(r, 1) = ap(x) exp ( 3 4,00 T>,
P

e At each SSA step: Based on this

[ Py(T,w

distribution, the next reaction and the

time of its occurence are
T he state is updated.

determined.




An SSA run
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SOA

Advantages

* Low memory requirement

* |n principle, computation does not depend exponentially on N

Disadvantages

e Can be very slow

» Convergence is slow ~Computational effort =C-

* No guaranteed error bounds

o Little insight




A Direct Approach to the Chemical Master
—guation

® The Finite State Projection Method
® Model Reduction and Aggregation
® Examples




We are interested in p(X,t), the probability that the chemical system will be in
state X at time, t.

The Chemical Master Equation (CME):

p(X;t) = —p(X;t) Z ap(X)+ Z p(X—vy; t)au(X—vy)
p=1 p=

The states of the chemical system can be enumerated:
. T
X:=[x; xp x3 ]

The probability density state vector P (X, -) : R — {qdefined by:

P(X;t) := [p(x1;t) p(x2;t) p(xs3;t) ... '

The evolution of the probability density state vector is governed by

P(X:t) = A -P(X;t)




The Finite State Projection Approach

The probability density vector
evolves on an infinite integer
lattice




The Finite State

Projection Approach

e A finite subset is appropriately

chosen




The Finite State

Projection Approach

e A finite subset is appropriately
chosen

 The remaining (infinite) states are
projected onto a single state (red)




The Finite State

Projection Approach

pro

e On

‘)

e A finite subset is appropriately
chosen

 The remaining (infinite) states are

jected onto a single state (red)

y transitions into removed

states are retained

The projected system can be solved exactly!




Finite Projection Bounds

Let J = [mq...my] be an indexing vector. We define A;
to be the principle submatrix of A defined by J.

Theorem [Projection Error Bound]: Consider any Markov

process in which the probability distribution evolves according to
the ODE:

P(X:t) = A -P(X;t).
If for an indexing vector J: 17 exp(Ajt) P(X;,0)>1—¢, then

< €

P(XJ/,t> 1

O

H P(X;t) } _ | exp(A t) P(X;;0) }

Munsky B. and Khammash M., Journal of Chemical Physics, 2006




The FSP Algorithm

e Step 0. Define the propensity functions and stoichiometry for all reactions.
Choose the initial probability density function P(X,0).
Choose the final time of interest, t.
Choose the total amount of acceptable error e.
Choose an initial finite set of states: Xj,.

Set 71 = 0.

e Step 1. Form A ;. Compute I;, = 17 exp(A t) P(X;;0).

e Step 2. If I‘JZ. > 1 — e stop.

exp(Ast) P(X;0) approximates P(X;t) to within e.

e Step 3. Add more states to get XJZ.H. Increment i. Go to step 1.




Application to the Pap Switch Model

Lrp

What is the probability of being
in State g, attime T7

\_
State g, (

ON \R\5\\R‘6 R%

Piliation takes place
if gene 1s ON at a

specific time: T State g, OFF




Application to the Pap Switch Model

@

10 reactions

State g,
An infinite number of states:

(T T ) (T
g1
g2
g3

ga
LRP

Papl |.

\ L

i=0,1,...




Application to the Pap Switch Model

Reactions
Stoichiometry | Rate Constant(cy)
Xi+u—Xy |1
Xy — X1 +u |2.5-2.25 (1)
Xi+u—X3 |1
X3+u— Xy [1.2-0.2 ()
XQ +u — X4 0.01
X4+ u — Xo 1.2—0.2(13;)
X3 +u— X4 0.01
X4+u— Xz |25-225()
X> — Xo+7r |10
r— () T

|
=

(VT IV T VA T IV I IV B V' T RV B RV

Parameters and Initial Conditions
Parameter Notation Value
Initial Catalyst Protein | r 5
Initial Gene State g1 —
Initial pdf P(X;0)y1 =1 |-
Allowable Error in pdf | e 10>

A. Hernday and B. Braaten, and D. Low, “The Mechanism by which DNA Adenine Methylase and Papl Activate the Pap
Epigenetic Switch,” Molecular Cell,vol. 12, 947-957, 2003.




Application to the

Pap Switch Model

Method

Number of simulations

Relative error
Time (s) in switch rate (%)

FSP

Does not apply”

<4 <0.5

SSAP
SSA
SSA
SSA

.25 X 10°
2.5X10°
50X 10°
10.0 X 10

= 38.8
27.3

9.9

8.5

T leaping
7 leaping
T leaping
7 leaping

.25 X 10°
2.5X10°
50X 10°
10.0 X 10°

9.9
24.4
7.0
6.0

Unlike Monte-Carlo methods (such as the SSA), the FSP directly

approximates the solution of the CME.




Reduction and Time-Scale Separation




Reducing Unobservable Configurations

* Often one is not interested in the entire probability distribution. Instead one
may wish only to estimate:

» a statistical summary of the distribution, e.g.
¢ means, variances, or higher moments
» probability of certain traits:

* switch rate, extinction, specific trajectories, etc...

* |n each of these cases, one can define an output vy:
P(t) = AP(¢t)

y(t) = CP(¢)
* Frequently, the output of interest relates to small subset of the state space




Aggregation and Model Reduction

Given Generic CME in the form of a linear ODE:
P(X,t) = AP(X,t)
The system begins in the set U at time ¢t = 0 with pdv: P(Xg,0).

Find: P(Xy,t¢), for some set Y.

Define:

R = set of states reachable from the U.

R’ = set of states unreachable from U.

O = set of states from which Y may be reached.
O’ = set of states unobservable from Y.




Aggregation and Model Reduction

The full pdv evolves according to:

" P(Xgoit) Aro,ro Agroro 0 0 - P(Xgo:t)
P(Xro,t) 0 Aroro 0 0 P(Xro,t)
P(Xrort) Aro'ro Aro.ro Aro.ro' Aro RO P(Xrot)

i P(XR/O/,t) | O AR’O’,R’O O AR’O’,R’O’ i P(XR/O/vt) i

* The unreachable states cannot be excited by reachable ones (may be removed!)
* The unobservable states may not excite the observable ones

The full system reduces to:

P(Xro,t) | _ | ARrRO.RO 0 P(Xgro,t)

P(XRO/, t) ARO’,RO ARO’,RO’ P(XRO/, t)
We need only keep track of the dynamics of unobservable states as a whole

P(Xro:t) | _ | ARO,RO 0 P(XRro,t)
17P(Xpor, t) 11 ARror RO 0 P(Xgpo,t)




2: Aggregation and Model Reduction

o Observed State

Unreachable
States {R'}
Unobservable
State {O'}
Reachable/
. Observable
States {RO}

o Initial State .» #
S50

q sa10adg Jo uone|ndod

NN

Population of Species a

Begin with a full integer lattice description of the system




2: Aggregation and Model Reduction

Remove unreachable states and aggregate unobservable ones




2: Aggregation and Model Reduction

Project the remaining states onto a finite subset




Reduction Through Time-Scale Separation

It often occurs in chemical systems that some reactions are very fast,
while others are relatively slow

These differences in reaction rates lead to significant numerical
stiffness

Often the fast dynamics are not of interest

One may remove the fast dynamics and focus on the dynamics on the
slow manifold




Time Scale Separation

Group together states that
are connected through fast
transitions

Fast groups reach proba-
bilistic equilibrium before a
slow transition occurs

Aggregate fast group into
states

Transition propensity is the
weighted sum of transition
propensities of unaggregated
states

L]

L] ]

WL (T] 0] (] (] |0 (N

WL
]I [0] 0] 8] ] [
L] ] 0] (0] [

population of Sq



Time Scale Separation

Hpm

e Each H,; is a generator for a fast group of states. €L is the slow
coupling reactions between blocks.

e Each H; has a single zero eigenvalue, A = 0, the rest of the eigen-
values have large negative real parts.

e Each H; has a right eigenvector, v; , and a left eigenvector, 11 that
correspond to the zero eigenvalue.




Time Scale Separation

e Collect the right and left zero eigenvectors
17 0 ] vy O

o 1T -.. 0 wvo

U= V=

i

e Define the similarity transformation:

_| U —1 _ 110 0
S—[SJ S1=|V S| SHS —[o AQ}

e In the new basis, the system becomes:

ql . csULV €ULSQ d1
q2 R 8SlLV AQ 6SlLSQ q-2




Time Scale Separation

q1 . ULV €ULS2 d1
('12 IR 6SlLV AQ —|— 8SlLSQ q-2

e Ignoring the fast stable modes, the dynamics of g3

q1 ~ eULVqy

e In the original coordinate system, P(t) is given by

P(t) ~ ¢V exp(ULVt)UP(0)

e Note that only the zero eigenvectors of H; need to be computed!

Simon HA, Ando A. Aggregation of variables in dynamic systems. Econometrica 1961; 29(2):111-138.

Phillips RG, and Kokotovic P, A Singular perturbation approach to modeling and control of Markov Chains,
IEEE Transactions on Automatic Control, 26 (5): 1087-1094, 1981.




—xample: The Full

Pap Switch Model




Realistic Pap Switch Model
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4 gene states based on
Lrp binding sites




A More Realistic Pap Switch Model
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DNA Adenine Methylase (DAM) A00000
can methylate the gene at the HeUUod
GATC site

16 different possible methylation patterns




Realistic
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Pap Switch Model
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Realistic Pap Switch Model

16 Different Methylation Patterns Plus 3 Pap production events and
x4 Different LRP binding Patterns one Pap degradation event.

=64 Different Operon Configurations!




S O70. 0 0O

lons

t

igura
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16 Different Methylation Patterns

x4 Different LRP binding Patterns
64 Different Operon Conf
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the ON states and can be aggregated.

These States are unobservable from




Aggregating Unobservable States

Locked
OFF




Aggregating Fast States




P vs, Monte Carlo Algorithms

Method

# Simulations

Time (s)?

Relative Error

b

Full M

odel

FSP

N.A. €

42.1

< 0.013%

SSA

10

> 150 days

Not available




Comparisons

— Full FSP
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Conclusions

* Low copy numbers of important cellular components give rise to stochasticity
IN gene expression. This in turn results in cell-cell variations.

* Organisms use stochasticity to their advantage

» Stochastic modeling and computation is an emerging area in Systems
Biology

* New tools are being developed. More are needed.

* Many challenges and opportunities for control and system theorists.
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Prediction vs. Experiments

IPTG [nM] (DAM Induction)
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Moment Computations

For the first moment of any X;, we multiply CME by X, and take
summation over all variables X,...X .

For the second order moment, E[X,L-Xj], we multiply CME by

X;X,; and again take summations:

dE[X;]
dt

M
> sipElwp(X)]
k=1

dE[X;X;] M

> GinElXjwip(X)] + E[Xwe(X)]s i + sigsjipElwy, (X))

dt —1

L et

W(X) = [wi(X) - wy(X)]"
In matrix notation:

dE[X]

dt
dE[X XT]

dit

SE[W(X)]

SEW(X)XT] + EW(X)XT1TST 4+ S{diagE[W (X)]}ST




The Linear Propensity Case

Suppose that the propensity functions are linear in the states,
e.d. wi(X) = apX; (for some j).

In this case E[W(X)X!] = Wy E[XX1] and E[W(X)] = Wx E[X].
Then
dE[X]

dt
dE[X XT]

dt

SWy E[X]

SWxE[XXT] 4+ E[XXT1STWE 4 S diag(WxE[X])ST

T he stationary covariance matrix C is given by the Lyapunov
equation

SWxC + CSTWE + S diagWxX)st =0




