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Gene Expression

• An Introduction
• Stochasticity in Gene Expression
• Randomness and variability



Why Are Stochastic Models Needed?

• Much of the mathematical modeling of gene networks represents gene 
expression deterministically

• Deterministic models describe macroscopic behavior; but many cellular 
constituents are present in small numbers

• Considerable experimental evidence indicates that significant stochastic 
fluctuations are present 

• There are many examples when deterministic models are not adequate



Modeling Gene Expression

Deterministic model

• Probability a single mRNA is transcribed in
time dt is krdt.

• Probability a single mRNA is degraded in
time dt is (#mRNA) · γrdt

Stochastic model
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★ Deterministic steady-state equals stochastic mean 
★ Coefficient of variation goes as 1/
★ When mean is large, the coefficient of variation is (relatively) small
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Intrinsic Variability in Gene Expression

• Noise propagates through the 
network

• Its amount depends on
‣ # of molecules
‣ stoichiometry
‣ regulation 
‣ ...

• Sometimes it is suppressed; 
other times it is exploited

• Deterministic models are not 
adequate

...

Source of variability at 
cellular level….

•  Small # of molecules 
•  Random events

 

“Intrinsic noise”

Impact of variability



Stochastic Influences on Phenotype

Fingerprints of identical twins Cc, the first cloned cat and her genetic mother

J. Raser and E. O’Shea,  Science, 1995.  



Exploiting the Noise

•  Stochastic mean value different from deterministic steady state
•  Noise enhances signal! 

Johan Paulsson , Otto G. Berg , and Måns Ehrenberg, PNAS 2000
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Noise Induced Oscillations

Circadian rhythm

Vilar, Kueh, Barkai, Leibler, PNAS 2002

• Oscillations disappear from deterministic model after a small reduction in deg. of repressor
• (Coherence resonance) Regularity of noise induced oscillations can be manipulated 
   by tuning the level of noise [El-Samad, Khammash]



The Pap Pili Stochastic Switch

• Pili enable uropathogenic E. coli to attach to epithelial cell receptors

‣ Plays an essential role in the pathogenesis of urinary tract infections

• E. coli expresses two states ON (piliated) or OFF (unpiliated)  

• Piliation is controlled by a stochastic switch that involves random 
molecular events



A Simplified Pap Switch Model

Lrp

•  Lrp can (un)bind either or both of two binding sites

•  A (un)binding reaction is a random event

leucine regulatory protein

One gene g

Site 1 Site 2
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Piliation takes place
if gene is ON at specific 

time: T



Identical Genotype Leads to Different Phenotype 

genegene genegene

UnpiliatedPiliated

….



Stochastic Chemical Kinetics

• Mathematical Formulation
• The Chemical Master Equation (CME)
• Monte-Carlo Simulations of the CME



• The state of the system is described by the integer vector x = (x1, . . . , xn)T ;

xi is the population of species Si.

• (N-species) Start with a chemically reacting system containing N distinct

reacting species {S1, . . . , SN}.

population of S1
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Stochastic Chemical Kinetics



• (M-reactions) The system’s state

can change through any one of

M reaction: Rµ : µ ∈ {1,2, . . . , M}..

• (State transition) An Rµ re-

action causes a state transition

from x to x + sµ.

s1 =
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S1 + S2 → S1

φ → S1

S1 → φR3

R2

R1Example:

Stoichiometry matrix:

S =
[

s1 s2 . . . sM

]



• (Transition probability) Suppose the system is in state x.

The probability that Rµ is the next reaction and that it will occurs within

the next dt time units is given by aµ(x)dt.

If Rµ is the monomolecular reaction Si → products, there exists some constant

cµ such that aµ(x) = cµxi.

cµ is numerically equal to the reaction rate constant kµ of conventional deter-

ministic chemical kinetics.

If Rµ is the bimolecular reaction Si + Sj → products, there exists a constant cµ

such that aµ(x) = cµxixj.

cµ is equal to kµ/Ω, where kµ is the reaction rate constant, and Ω is the

reaction volume



The Chemical Master Equation

The Chemical Master Equation (CME):



Challenges in the Solution of the CME

• The state space is potentially HUGE!

• Very often transitions have vastly different time-scales

•
 

N species

Up to n copies/species

Number of states: nN

∼ 104 different proteins

∼ 106 copies/proteins (avg.)

∼ 106000 states!

Eukaryotic Cell

Proteins bind together to create 
even more species!

‖a(x)‖ → ∞ as ‖x‖ → ∞



For many species: n << 106

• Modularity: Small subsystems can often be isolated
 e.g. heat-shock has ~7 key interacting molecules 

• Specificity: Each protein binds to one or very few other molecules

• Many “key” molecules exist in small numbers: genes, mRNAs, 
signaling and regulatory proteins, ... 
e.g. liver cells, 97% of mRNAs are present at ~10 copies/cell.  

• Key molecules constitute many of the compound species: 
e.g. methylated DNA

Exploiting Underlying Biology

N << 104  N=23 (heat-shock)
 N=63 (pap switch)



• This approach constructs numerical realizations of x(t) and then histogram-

ming or averaging the results of many realizations (Gillespie 1976).

• At each SSA step: Based on this

distribution, the next reaction and the

time of its occurence are determined.

The state is updated.

Monte Carlo Simuations: The Stochastic 
Simulation Algorithm (SSA)

Px(τ, µ) = aµ(x) exp

(

−

M
∑

j=1
aj(x) τ

)

,

• Start by computing the reaction probability density function Px(τ, µ):

Px(τ, µ) is the joint probability density function of the two random

variables:

– “time to the next reaction” (τ);

– “index of the next reaction” (µ).

µ

τ

Px(τ,µ)

1

2

3

M dτ

..
.



An SSA run
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SSA 

• Low memory requirement 

• In principle, computation does not depend exponentially on N

Advantages

Disadvantages
• Can be very slow

• Convergence is slow

• No guaranteed error bounds

• Little insight 

Computational effort =C
1
ε2



A Direct Approach to the Chemical Master 
Equation

• The Finite State Projection Method
• Model Reduction and Aggregation
• Examples



The Chemical Master Equation (CME):

The states of the chemical system can be enumerated:

The probability density state vector                                   is defined by:

The evolution of the probability density state vector is governed by



The Finite State Projection Approach

The probability density vector
evolves on an infinite integer 
lattice



The Finite State Projection Approach

• A  finite subset is appropriately 
chosen



The Finite State Projection Approach

• A  finite subset is appropriately 
chosen

• The remaining (infinite) states are 
projected onto a single state (red)



The Finite State Projection Approach

The projected system can be solved exactly!

• A  finite subset is appropriately 
chosen

• The remaining (infinite) states are 
projected onto a single state (red)

• Only transitions into removed 
states are retained



Finite Projection Bounds

Munsky B. and Khammash M., Journal of Chemical Physics, 2006

Theorem [Projection Error Bound]: Consider any Markov

process in which the probability distribution evolves according to

the ODE:

Ṗ(X; t) = A ·P(X; t).

If for an indexing vector J: 1T exp(AJt) P(XJ; 0) ≥ 1 − ε, then

∥

∥

∥

∥

∥

[

P(XJ; t)
P(XJ ′; t)

]

−

[

exp(AJt) P(XJ; 0)
0

]
∥

∥

∥

∥

∥

1

≤ ε



The FSP Algorithm



Application to the Pap Switch Model

R1 R2 R3
R4

R8
R7R6R5

Lrp

PapI

State g3

State g4

State g1

State g2

ON 

OFF

OFF

OFF

Piliation takes place
if gene is ON at a 
specific time: T

What is the probability of being 
in State g2 at time T?



Application to the Pap Switch Model

State g3

R1 R2
R3 R4

R8
R7R6R5

Lrp

PapI

State g4

State g1

State g2

 An infinite number of states:

 10 reactions



Application to the Pap Switch Model

 A. Hernday and B. Braaten, and D. Low, “The Mechanism by which DNA Adenine Methylase and PapI Activate the Pap 
Epigenetic Switch,” Molecular Cell,vol. 12, 947-957, 2003.



Application to the Pap Switch Model

●   Unlike Monte-Carlo methods (such as the SSA), the FSP directly 
approximates the solution of the CME.



Model Reduction and Time-Scale Separation



Reducing Unobservable Configurations

• Often one is not interested in the entire probability distribution. Instead one 
may wish only to estimate:

‣ a statistical summary of the distribution, e.g.

✴means, variances, or higher moments

‣ probability of certain traits:

✴switch rate, extinction, specific trajectories, etc…

• In each of these cases, one can define an output y:

• Frequently, the output of interest relates to small subset of the state space



Aggregation and Model Reduction

Given Generic CME in the form of a linear ODE:

Ṗ(X, t) = AP(X, t)

The system begins in the set U at time t = 0 with pdv: P(XU,0).



Aggregation and Model Reduction

The full pdv evolves according to:

•  The unreachable states cannot be excited by reachable ones (may be removed!)

0 0

0 0

•  The unobservable states may not excite the observable ones

The full system reduces to:
[

Ṗ(XRO, t)
Ṗ(XRO′, t)

]

=

[

ARO,RO 0

ARO′,RO ARO′,RO′

] [

P(XRO, t)
P(XRO′, t)

]

[

Ṗ(XRO, t)
1T Ṗ(XRO′, t)

]

=

[

ARO,RO 0

1TARO′,RO 1TARO′,RO′

] [

P(XRO, t)
P(XRO′, t)

]

We need only keep track of the dynamics of unobservable states as a whole

0

0 0
0



Begin with a full integer lattice description of the system

FSP: Aggregation and Model Reduction



Remove unreachable states and aggregate unobservable ones

FSP: Aggregation and Model Reduction



Project the remaining states onto a finite subset

FSP: Aggregation and Model Reduction



Reduction Through Time-Scale Separation

• It often occurs in chemical systems that some reactions are very fast, 
while others are relatively slow

• These differences in reaction rates lead to significant numerical 
stiffness

• Often the fast dynamics are not of interest

• One may remove the fast dynamics and focus on the dynamics on the 
slow manifold



Group together states that

are connected through fast

transitions

Fast groups reach proba-

bilistic equilibrium before a

slow transition occurs

Aggregate fast group into

states

Transition propensity is the

weighted sum of transition

propensities of unaggregated

states

Time Scale Separation
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• Each Hi is a generator for a fast group of states. εL is the slow

coupling reactions between blocks.

• Each Hi has a single zero eigenvalue, λ = 0, the rest of the eigen-

values have large negative real parts.

• Each Hi has a right eigenvector, vi , and a left eigenvector, 1T that

correspond to the zero eigenvalue.

Time Scale Separation
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• Collect the right and left zero eigenvectors

S−1 =

[

V S2

]

SHS−1 =

[

0 0

0 Λ2

]

S =

[

U

S1

]

• Define the similarity transformation:

[

q̇1

q̇2

]

=

[

εULV εULS2

εS1LV Λ2 + εS1LS2

] [

q1

q2

]

• In the new basis, the system becomes:

Time Scale Separation



• Ignoring the fast stable modes, the dynamics of q1

q̇1 ≈ εULVq1

P(t) ≈ εV exp(ULVt)UP(0)

• In the original coordinate system, P (t) is given by

• Note that only the zero eigenvectors of Hi need to be computed!

Simon HA, Ando A. Aggregation of variables in dynamic systems. Econometrica 1961; 29(2):111–138.

Phillips RG, and Kokotovic P, A Singular perturbation approach to modeling and control of Markov Chains,
IEEE Transactions on Automatic Control, 26 (5): 1087-1094, 1981. 

Time Scale Separation

[

q̇1

q̇2

]

=

[

εULV εULS2

εS1LV Λ2 + εS1LS2

] [

q1

q2

]



Example: The Full Pap Switch Model



A More Realistic Pap Switch Model

1

2

3

4

Lrp

4 gene states based on 
Lrp binding sites
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CH3

A More Realistic Pap Switch Model

16 different possible methylation patterns

DNA Adenine Methylase (DAM) 
can methylate the gene at the 

GATC site
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A More Realistic Pap Switch Model
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 16  Different Methylation Patterns
    x 4   Different LRP binding Patterns
   =64   Different Operon Configurations!

Plus 3 Pap production events and 
one Pap degradation event.

papI

A More Realistic Pap Switch Model
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 16  Different Methylation Patterns
    x 4   Different LRP binding Patterns
   =64   Different Operon Configurations!

Locked OFF States

These States are unobservable from 
the ON states and can be aggregated.

Aggregating Unobservable States
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Aggregating Fast States
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Table 1: A comparison of the efficiency and accuracy of the FSP, SSA, and
approximate FSP and SSA methods.
Method # Simulations Time (s)a Relative Errorb

Full Model

FSP N.A. c 42.1 < 0.013%
SSA 104 > 150 days Not available

Reduced Model

FSP approx. N.A. 3.3 ≈ 1.3%
SSA approx. 104 9.8 ≈ 16%
SSA approx. 105 94.9 ≈ 7.7%
SSA approx. 106 946.2 ≈ 1.6%

aAll computations have been performed in Matlab 7.2
on a 2.0 MHz PowerPC G5.

bError in switch rate is computed at t = 4000s
cThe FSP is run only once with a specified allowable

total error of 10−5.

FSP vs. Monte Carlo Algorithms



Reduced FSP
QS−SSA (104 runs)
QS−SSA (105 runs)
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Conclusions

• Low copy numbers of important cellular components give rise to stochasticity 
in gene expression. This in turn results in cell-cell variations.

• Organisms use stochasticity to their advantage

• Stochastic modeling and computation is an emerging area in Systems 
Biology

• New tools are being developed. More are needed.

• Many challenges and opportunities for control and system theorists.
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Prediction vs. Experiments



Moment Computations



The Linear Propensity Case


