A A S

Ishay Kamon*
Elon Rimonf
Ehud Rivlin*

*Department of Computer Science
tDepartment of Mechanical Engineering
Technion

Haifa 32000, Israel

Abstract

The Bug family algorithms navigate a 2-DOF mobile robot in a
completely unknown environment using sensors. TangentBug is a
new algorithm in this family, specifically designed for using a range
sensor. TangentBug uses the range data to compute a locally short-
est path, based on a novel structure termed the local tangent graph
(LTG). The robot uses the LTG for choosing the locally optimal di-
rection while moving toward the target, and for making local short-
cuts and testing a leaving condition while moving along an obstacle
boundary. The transition between these two modes of motion is
governed by a globally convergent criterion, which is based on the
distance of the robot from the target. We analyze the properties of
TangentBug, and present simulation results that show that Tangent-
Bug consistently performs better than the classical Bug algorithms.
The simulation results also show that TangentBug produces paths
that in simple environments approach the globally optimal path, as
the sensor’s maximal detection-range increases. The algorithm can
be readily implemented on a mobile robot, and we discuss one such

implementation.

1. Introduction

Autonomous sensor-based navigation of indoor mobile robots
has received considerable attention in recent years. Work in
this area is motivated by applications such as cargo deliv-
ery in an office environment, where the robot cannot base its
planning on complete a priori knowledge of the environment;
rather, the robot must use its sensors to perceive the envi-
ronment, and plan accordingly. The two main sensor-based
motion-planning approaches use either global or local plan-
ning. Let us briefly describe these two approaches, and point
out their limitations,

In the global sensor-based planning approach, the mobile
robot builds a global model of the environment based on sen-
sory information, and uses it for path planning (Foux, Hey-
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mann, and Bruckstein 1993; Stentz 1994). Some recent work
also uses a global model for sensor-based navigation of gen-
eral robots (Choset and Burdick 1995; Rimon 1997), but it
too has so far been implemented only on mobile robots. The
global planning approach guarantees that either the target will
be reached, or the robot will conclude that the goal is unreach-
able. However, the construction and maintenance of a global
model based on sensory information imposes a heavy com-
putational burden on the robot. Moreover, the reliance on a
global model for the navigation requires frequent localization
of the robot relative to the model, a process that is difficult,
due to the inherent uncertainties of practical sensors (Crow-
ley and Demazeau 1993; Leonard and Durrant-Whyte 1992;
Rencken 1993).

In contrast, local path planners use local sensory informa-
tion in a purely reactive fashion. In every control cycle, the
robot uses its sensors to locate nearby obstacles and to plan its
next action based on this local information. The local plan-
ners are usually much simpler to implement than the global
ones, since they typically use navigation vector fields that
directly map the sensor readings to actions. Different meth-
ods are used to choose or learn these vector fields, includ-
ing the potential-field method and its variations (Arkin 1987;
Khatib 1985), fuzzy logic approaches (Goodridge and Luo
1994; Reignier 1994), and methods that construct specialized
data structures to make more reliable decisions (Bauer, Feiten,
and Lawitzky 1993; Borenstein and Koren 1990). However,
while the local approaches are simple to implement, they dc
not guarantee global convergence to the target. A local plan-
ner may get trapped in a local minimum or in a loop. Thus
the global approaches are difficult to implement, while the
local ones lack a global convergence guarantee.

We focus on a midway approach, called the Bug approach
which was originated by Lumelsky and Stepanov (1987), an
has been subsequently studied by several others (Lumelsk!
1991; Noborio and Yoshioka 1993; Sankaranarayanan am
Vidyasagar 1991). This approach combines local plannin.
with a globally convergent criterion, as follows. It uses tW
reactive modes of motion, and two transition conditions f€
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switching between these two modes. The modes are (1) mo-
tion toward the target, and (2) following an obstacle bound-
ary. The robot initially moves toward the target. When it
hits an obstacle, it switches to boundary-following mode. It
{eaves the obstacle boundary when a leaving condition, which
monitors a globally convergent criterion, holds. The leaving
condition ensures that the distance to the target decreases at
successive hit points, and thus guarantees global convergence
to the target.

The Bug approach reduces the reliance on a global model
to the essential minimum of loop detection, while augmenting
the purely reactive navigation decisions with a globally con-
vergent criterion. Thus, the approach minimizes the compu-
tational burden on the planner while still guaranteeing global
convergence to the target. However, with the exception of
VisBug (Lumelsky and Skewis 1990), the Bug algorithms
were designed for using contact sensors, and not range (or
distance) sensors. Even VisBug uses the range data only to
find shortcuts relative to the path generated by the classical
Bug2 algorithm (Lumelsky and Stepanov 1987), which relies
on contact sensors (Fig. 1a). We present a new Bug algorithm,
termed TangentBug, that specifically exploits range data. The
new algorithm uses the notion of a tangent graph to construct
a local tangent graph, which is used to produce paths that
often resemble the shortest path to the goal (Fig. 1b).

The next section reviews the tangent graph and introduces
the local tangent graph. We then present the TangentBug al-
gorithm as a one-parameter family of algorithms, parameter-
ized by the maximal detection range R, where 0 < R < o0.
In Section 4 we show that TangentBug is globally conver-
gent, and discuss general bounds on the performance of the
algorithm. In Section 5 we present simulation results that
show that TangentBug often generates paths that approach
the shortest path as detection range R increases. The simu-
lations also compare TangentBug with the classical VisBug
algorithm, showing that TangentBug generates significantly
shorter paths in congested, officelike scenarios. Finally, we
discuss our implementation of TangentBug on a mobile robot.

2. The Tangent Graph

In this section we review the tangent graph, which requires
global knowledge of the environment. Then we introduce its
sensor-based local version, called the local tangent graph.

2.1. Review of the Global Tangent Graph

First, recall the definition of the visibility graph. Constder a
polygonal cnvironment in which a start point, S, and a tar-
get point, T, are specified. The visibility graph, denoted
VG(V,, E,), is the graph whose vertices V,, are the obsta-
cle vertices and the points § and 7T, and whose edges E, are
the collision-free line segments that connect the graph ver-
tices. An example of the visibility graph for an environment
with three obstacles is shown Figure 2a. It is known that the

shortest collision-free path from $ to T always lies on the
visibility graph. Thus, an optimal collision-free path from $
to 7 can always be found by limiting the search to the vis-
ibility graph. However, the visibility graph contains many
edges that never participate in the shortest path. For the pur-
pose of comparison with the tangent graph, if there are N
obstacle vertices, the number of edges in the visibility graph
is bounded by || E, || < N2.

The tangent graph, denoted T G(V;, E,), was introduced in
Rohnert (1986) and extended by Liu and Arimoto (1992). It
is the subgraph of VG obtained by retaining only the convex
vertices of the obstacles, and the edges which are bitangent to
these vertices (Fig. 2b). Like the visibility graph, the tangent
graph contains the shortest path in the environment. But the
tangent graph is the minimal such graph, as the removal of
any of its edges would destroy its optimality. The tangent
graph has a significantly smaller number of vertices and edges
than the visibility graph, as Figure 2 shows. Thus, searching
for the shortest path is more efficient on the tangent graph.
To estimate the size of T G, assume that the obstacles are the
union of M convex polygons, such that the boundary curves of
any two overlapping convex polygons intersect at two points.
(This condition can always be met by suitable subdivision of
the polygons.) It is known that any two convex polygons can
have at most four bitangent edges. Hence the number of edges
in TG is bounded by || E || < 2M?+ N. Since M is typically
much smaller than N, we see that [[E, || is O(N), while [E, ||
is O(N?).

REMARK 1. The tangent graph was also generalized in Liu
and Arimoto (1992) to piecewise-smooth obstacles. In this
case, the boundary of each obstacle is partitioned into convex
and concave arcs. The edges of the tangent graph are the
convex boundary arcs and the line segments that are bitangent
to convex boundary arcs.

2.2. The Local Tangent Graph

We assume a range sensor that provides perfect readings of the
distance to the obstacles within the visible set, defined as fol-
lows. Let the free space be the complement of the obstacles’
interior, and let x be the current robot location. Then the vis-
ible set is the star-shaped set contained in the free space, with
center at x and maximal radius R. The local tangent graph,
or LTG, 1s atangent graph that includes only the portion of the
obstacles that lie in the visible set. The LTG is constructed
as if the local range information represents all the obstacles
in the environment. This assumption allows the robot to base
its local decisions only on the currently observable obstacles,
thereby greatly simplifying the data processing. The local-
range data is first divided into distinct sensed obstacles by a
process described below. Each sensed obstacle is then mod-
eled as a thin wall in the real world. The thin-wall model
always underestimates the obstacles’ sizes, but a more accu-
rate model would require computationally expensive model-
ing techniques that we wish to avoid.
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the leaving condition

,T-/\\Ef\holds at this point

the robot switches here to
®) boundary-following mode

Fig. 1. An example comparing TangentBug with VisBug: (a) the path generated by VisBug using a contact sensor (solid line),
and a sensor with unlimited detection range (dashed line); (b) the path generated by TangentBug using the same sensors.

Fig. 2. A comparison of (a) the visibility graph and (b) the tangent graph.

Next, we describe the partitioning of the range data into
sensed obstacles. The range information can be represented
as a function r(8), where 6 is the angle relative to a pre-
defined direction and r (@) is the distance in the direction 6
from the robot location x to the nearest point on an observed
boundary. The range data is divided into distinct sensed ob-
stacles based on the fact that the range changes continuously
along the boundary of a single visible part of an obstacle. The
function r(#) has finitely many discontinuities, which occur
on tangent lines or at angles where an obstacle is occluded.
A continuous range interval (r(«), r(8)), whose endpoints
are either discontinuity points or points where r(8) = R, is
considered a distinct sensed obstacle. Note that a single real
obstacle can generate several sensed obstacles, as shown in
Figure 3a. Last, when the robot touches an obstacle edge, the
portion of the edge within the visible set is considered to be a
sensed obstacle, as shown in Figure 3b.

The nodes of the LTG are the current robot location x, the
endpoints of the sensed obstacles, and (optionally) an addi-

tional node in the direction of the target called 7,,4.. If the
line segment from x to T is not blocked by an obstacle within
the visible set, T4, 1S at the furthest point on this line. In
particular, T4, 1s at T if the target lies in the visible set. The
edges of the LTG connect the robot location x with all the
other nodes of the LTG. The LTG additionally contains edges
that are bitangent to the sensed obstacles, but the algorithrr
never uses these edges and they are not explicitly constructed
Two examples of the LTG are shown in Figure 3.

A detectionrange of R = 0 corresponds to contact sensors
and this case requires special treatment to fit the above del
initions. We assume that the contact sensors can determin
if there is free space in the direction of the target, and ca
recover the local orientation of a touched boundary. Thes
two types of information are modeled as distance readings i
a small range of R = ¢, where ¢ > 0 is a small paramete
If there is free space in the direction of 7, it is represente
by placing T,,4. at a distance € from x in the direction of 7
The boundary touched by the robot is represented by a sho
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(b)

Fig. 3. (a) Using a detection range R, the LTG edges connect the robot location x with the endpoints of the sensed obstacles
and the T;,,4, (bitangent edges are not shown). (b) The LTG when the robot touches an obstacle edge.

edge of length 2¢ tangent to the boundary, and the endpoints
of this edge become vertices of the LTG.

REMARK 2. The LTG can also be used for general piecewise-
smooth obstacles, with the following additional construction.
When the robot touches a convex obstacle arc, the visible set
locally intersects the boundary only at the contact point. We
represent this boundary by a short segment of length 2¢ tan-
gent to the boundary, and make the endpoints of this segment
nodes of the LTG.

3. The TangentBug Algorithm

The TangentBug algorithm navigates a point robot in a planar
unknown environment populated by stationary obstacles. The
obstacles can have any piecewise-smooth boundary, although
in the sequel we focus on polygonal obstacles. The sensory
input during the navigation consists of the robot’s current po-
sition x, and the distance from x to the obstacles within a
detection range R. First we describe the global structure of
the algorithm, and then we discuss its detailed operation.

3.1. Algorithm Description

TangentBug uses two basic behaviors: motion toward the tar-
get and obstacle boundary-following. In every step, the robot
constructs the LTG based on the current range readings, and
uses the LTG as follows. During motion toward the target,
the robot moves in the locally optimal direction, which is the
direction of the shortest path to the target according to a sub-
graph of the LTG described below. Let the function d(w, T)
measure the Euclidean distance of a point w from 7T, such

that the points w belong to the free space. The robot keeps
moving toward the target until it is trapped in the basin of
attraction of a local minimum of d(w, T'). Then it switches
to the boundary-following behavior.

The robot chooses a boundary-following direction, and
moves along the boundary while using the LTG to make local
shortcuts. But the robot may not leave the boundary before
the following leaving condition is met. While the robot is
following the boundary, it records the minimal distance to the
target, dmin(7T"), observed so far along the boundary of the
followed obstacle. The robot leaves the obstacle boundary
when there is a node Vjgqq. in the current LTG that satis-
fies d(Vigave, T) < dmin(T). After leaving the obstacle, the
robot performs a transition phase before it resumes its motion
toward the target. In the transition phase, the robot moves
directly toward Vj.4ye until it reaches a point Z that satis-
fiesd(Z,T) < dmin(T). At this point the robot resumes its
motion toward the target. A summary of the algorithm now
follows.

1. Move toward T along the locally optimal direction on
the current LTG subgraph, until one of the following
events OCCurs:

* the target is reached. Stop.
* alocal minimum is detected. Go to step 2.

2. Choose a boundary-following direction. Move along
the boundary using the LTG while recording dp;n(T),
until one of the following events occurs:

« the target is reached. Stop.
« the leaving condition holds: IVieave €

d(Vieave, T) < dmin(T). Go to

LTG s.t.
step 3.
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« the robot completed a loop around the obstacle.
The target is unreachable. Stop.

3. Perform the transition phase. Move directly toward
Vieave until reaching a point Z that satisfies d(Z, T) <
dpin(T). Gotostep 1.

3.2. Motion toward the Target

During motion toward the target, the robot moves in the direc-
tion of the shortest path to the target according to a subgraph
of the current LTG, which is defined as follows. Consider an
LTG edge that emanates from the current robot location. We
call such an edge admissible if the motion of the robot along
the edge decreases its distance to the target. The subgraph G
consists of the admissible LTG edges and the LTG nodes asso-
ciated with these edges. Thus the nodes of Gy, denoted Vg,
are given by Vg, = (x}U{V € LTG : (V —x)-(T —x) > 0},
where x is the current robot location. By limiting the com-
putation to the subgraph G, we are able to incorporate local
shortest-path considerations with global convergence consid-
erations.

The shortest path to the target is constructed as follows.
Recall that the visible obstacles are modeled as thin walls,
and are assumed to be the only obstacles in the environment.
The algorithm adds a virtual edge from each node V of G to
T, and assigns to the edge the length of the shortest path from
V to T based on the currently visible obstacles. The shortest
path from the robot location x to T is then computed on the
resulting augmented graph. Figure 4 shows two examples of
the construction. In Figure 4a, a detection range R is used,
and the subgraph G is identical to the LTG. The augmented
graph has two additional edges from the nodes V7 and Vg to
T. In Figure 4b, an unlimited detection range is used, and G
consists of the nodes Vi, Vg, and the node generated from
occlusion By,. The augmented graph consists of two virtual
edges connecting the nodes By, and Vg to T. Note that the
shortest path from Vg to T, according to the visible obstacles,
is not a straight-line segment.

The motion toward the target terminates when the robot
detects that all the nodes V in the subgraph G satisfy
d(V,T) > d(x, T). As we show in the ensuing analysis, this
condition occurs when the robot is trapped in the basin of at-
traction of a local minimum of the distance function d(w, T).
The robot subsequently terminates its motion toward the tar-
get and switches to the boundary-following mode. Several
examples of this event are illustrated in Figure 5, including
an example where the switch occurs at the start point S.

3.3. Following an Obstacle Boundary

During the boundary-following motion, the robot moves away
from the local minimum of d(w, T), which terminated the
motion toward the target. The local minimum necessarily
lies on the boundary of some obstacle, called the blocking

obstacle. Moreover, the local minimum is necessarily visible
from the robot’s location. The robot first chooses a direction
along which to follow the boundary of the blocking obstacle,
based on the shortest path to the target, according to the LTG.!
Then it records in the variable dp;,(T) the minimal distance
to the target observed along the visible portion of the blocking
obstacle.

Next, the robot follows the obstacle boundary. During this
motion, the robot continuously updates the variable d,,;, (T),
and uses the current LTG to plan local shortcuts along the
followed obstacle boundary. The robot also computes the
subgraph Go = {V € LTG : d(V,T) < dpin(T)}. This
subgraph is usually empty. When it becomes nonempty, there
exists a node Vig,. € LTG such that d(Viggye, T) < dpin(T).
(If G, contains several nodes, V.4, is chosen on the shortest
path to T in the augmented graph, based on G3.) When Vi,
is detected, the leaving condition holds and the robot leaves
the obstacle boundary.

After leaving the obstacle, the robot performs a transition
phase before it resumes its motion toward the target. In this
phase the robot moves directly toward Vj,,y. until it reaches
a point Z that satisfies d(Z, T) < dmin(T). The transition
phase ensures that when the next motion-toward-the-target
segment terminates, it will be at a point whose distance to T
is shorter than dp,;,(T). This is one of the key properties that
guarantee convergence of the robot to the target.

Finally, special treatment is necessary when the robot
reaches a convex obstacle vertex during the boundary-
following mode of motion. (This event can occur for any
detection range.) The robot’s field of view changes discon-
tinuously at this point, and the LTG nodes may change their
location discontinuously. Such a discontinuous change may
cause the robot to miss a suitable leave point. To prevent this
possibility, the robot simulates the following “smoothing” of
the vertex. Whenever the robot reaches an obstacle vertex, it
assumes that the boundary’s tangent vector changes contin-
uously from the direction of the edge entering the vertex to
the direction of the edge emerging from the vertex. The robot
then computes the LTG for all the intermediate directions, and
as a result the LTG nodes continuously scan the boundary of
the obstacles visible from the vertex (Fig. 14).2

3.4. An Example

Figure 1 illustrates the paths generated by TangentBug and
the classical VisBug algorithms (Lumelsky and Skewis 1990).
The path planned by VisBug using a contact sensor is shown

1. The method for choosing the boundary-following direction can be altered
without harming the convergence properties.

2. The leaving condition can be tested more efficiently, without computing
multiple LTGs, as follows. Upon arriving to a convex vertex, the robot
computes the LTG, updates d;, (T), and detects the obstacle boundary that
blocks the way to the target. The robot then searches this boundary for a
point C that satisfies d(C, T} < dpin(T). If such a point C exists, the
leaving condition holds and Vj,,, is set to C.
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Fig. 4. The subgraph G and the augmented graph for (a) a detection range R, and (b) an unlimited detection range.

with solid line in Figure 1a (it is identical to Bug2’s path).
Using unlimited sensor range, VisBug plans local shortcuts
relative to Bug?2’s path, as shown with dashed line in Figure 1a.
Using VisBug, the robot leaves the obstacle boundary at the
point Ly, as soon as the straight-line {L;, T} is visibie to the
robot. The path planned by TangentBug using a contact sensor
is shown with solid line in Figure [b. The robot switches
from motion toward the target to boundary-following at the
point P, where it detects a local minimum of d(w, 7). The
robot leaves the first obstacle at the point L; where T4, €
LTG and d(Tpode, T) < dmin(T). When unlimited sensor
range is used, as depicted with a dashed line in Figure 1b, the
resulting path is completely different. The LTG at S consists
of the two endpoints of the blocking obstacle, Vi and Vg, and
the locally optimal direction is toward Vy. In this case, the
robot continuously uses the motion toward the target behavior
until it reaches the target. A more detailed comparison of
TangentBug with VisBug is carried out in Section 5.

4. Algorithm Analysis

We investigate several properties of TangentBug, making the
following assumptions. The mobile robot is modeled as
a point moving in a planar configuration space (C-space).
We assume that the point representing the robot moves in a
bounded region of the plane, which is populated by station-
ary polygonal obstacles. The free C-space, denoted F, is the
complement of the obstacles’ interiors. Note that , being
bounded and polygonal, contains finitely many local minima
of the distance function d(w, T). Last, we consider the two
extreme types of range sensors: a contact sensor and a sensor
with unlimited detection range.

We define several distinguished points along the path. A
switch point P; is a point where the robot switches from
motion toward the target to boundary-following. A local-

minimum point M; is the local minimum of d(w, T) associ-
ated with the switch event at P;. A leave point L; is a point
where the leaving condition holds and the transition phase be-
gins. Last, a transition point Z; is a point where the transition
phase terminates and the motion toward the target resumes.

We need the following property of the motion-toward-the-
target mode.

LEMMA 1. Thedistance of the robot from the target, d(x, T),
decreases monotonically during each motion-toward-the-

target segment, and between successive motion-toward-the-
target segments.

Proof. By definition of the algorithm, during motion to-
ward the target the robot moves along admissible edges, along
whichd(x, T)decreases. The distance d(x, T') also decreases
between successive motion-toward-the-target segments, since
the leaving condition guarantees that d(P;, T) > dpin(T) >
d(Z;, T), where P; is the endpoint of the previous segment
and Z; is the start point of the next segment. [

4.1. Using a Contact Sensor

When a contact sensor is used, the LTG consists of the follow-
ing two types of nodes. If there is free space in the direction
of T, it is represented by 7,4, Which is placed at a distance
€ from x in the direction of T. If the robot touches an obsta-
cle boundary, the boundary is represented by a short edge of
length 2¢ tangent to the boundary, and the endpoints of this
edge become nodes of the LTG. For this construction the tran-
sition phase is of length ¢, and we may assume that L; = Z;.
Further, when a contact sensor is used, the robot switches
from motion toward the target to boundary-following when
it reaches a local-minimum point M;. Hence all the switch
points satisfy P; = M;.

Each motion-toward-the-target segment consists of the fol-
lowing two types of subsegments. Let H; be a point where
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R
Fig. 5. Starting at S, the robot terminates its motion toward
the target at P, where it detects a local minimum. The robot
next switches to boundary-following. The point P is shown
for (a) a contact sensor, (b) a limited sensor range R, and {c)
an unlimited sensor range.

the robot first hits an obstacle, and let D; be a point where
the robot departs from an obstacle, still in the motion-toward-
the-target mode. Then the direct subsegments are [L;, H; (]
and [D;, H;11]. In these subsegments, the robot moves di-
rectly toward the target. The sliding subsegments are [H;, D;]
and [H;, M;]. In these subsegments, the robot slides along
the boundary of an obstacle, still in the motion-toward-the-
target mode. The motion-toward-the-target segments are in-
terleaved with boundary-following segments, in which the
robot moves from a local minimum point M; to a leave point
L; (Fig. 6). A detailed analysis of TangentBug for the contact-
sensor case appears in Kamon, Rimon, and Rivlin (1995).
However, of special interest is the following upper bound on
the performance of TangentBug. In the proposition, Dr de-
notes the disc with center at 7" and radius |S—T.

PROPOSITION 1.  Using acontact sensor, an upper bound L,y
on the path length of TangentBug is

Lyax = IS=T1 + Y TI; x § Minima;,
iel
where 1 is the index set of the obstacles that intersect the disc
Dy, T1; is the perimeter of the ith obstacle, and § Minima; is
the number of local minima of d(w, T) in D7 along the ith
obstacle boundary.

Proof. First, consider the motion toward the target seg-
ments. Using Lemma 1, the start point of each direct sub-
segment is closer to T than the endpoint of the previous di-
rect subsegment, and these subsegments all point toward 7.
Hence the total length of the direct subsegments is bounded
by IS—T]. Lemma 1 also implies that during motion toward
the target, the robot hits obstacles only inside the disc Dr,
and the robot traverses any boundary segment at most once.
Hence the total length of the sliding subsegments is bounded

e

Fig. 6. In the motion-toward-the-target segment from S
to M3, the direct subsegments are (S, H;], [Di, H2], and
{D,, H3]. The sliding subsegments are [Hy, D11, {H2, D2l
and [ H3, M3].
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by the sum ), 7 I1;. Consider now the boundary-following
segments. In Kamon, Rimon, and Rivlin (1995), we show
that the robot switches to boundary-following at most once
at every local minimum of d(w, T'). Moreover, only the lo-
cal minima in Dr are used. Hence } ;. y [1; x ff Minima; is
an upper bound on the length of the boundary-following seg-
ments. Last, if T is reachable from § the global minimum on
each obstacle never initiates boundary-following; hence we
subtract unity from f Minima;. [J

REMARK 3:  The proposition specifies an upper bound on the
path length of TangentBug. But we may also ask what is the
lower bound. Lumelsky and Stepanov (1987) showed that the
worst-case> lower bound on the path length of any Bug-type
algorithm that uses a contact sensor is [|S—T1 + ;.7 ;-
(Sankaranarayanan and Vidyasagar [1991] provided a more
refined analysis of the lower bound.) However, in practice,
the average performance is more important, and we compare
the average performance of TangentBug with the classical
VisBug algorithm in Section 5.

4.2. Using a Range Sensor

We now investigate the case of a range sensor with unlimited
detection range. First, we show that TangentBug terminates
after a finite-length path. Then we show that TangentBug is
complete, and discuss the upper bound on the path length. We
begin with several definitions. For unlimited detection range,
the LTG nodes are the current robot location x, possibly the
target 7', and the endpoints of the visible obstacles. The latter
can be of the following two types. The first, called tangent
nodes, are convex obstacle vertices V, with the property that
the line containing the segment [x, V] is tangent to the obsta-
cle at the vertex V. The second, called occlusion nodes, are
points in the interior of obstacle edges generated from occlu-
sion by convex obstacle vertices (Fig. 4). At every step the
robot moves in the direction of a particular tangent node on
the LTG. This node is called the current focus node, and is
denoted F'.

Our first goal is to show that TangentBug terminates.
The following lemma asserts that TangentBug generates a
piecewise-linear path. Each change of direction in this path
is associated with a change of the current focus node, which
can occur in one of the following three ways. In the event
called type I, the robot reaches F and chooses a new focus
node. In the type 2 event, the shortest path to T on the aug-
mented graph ceases to pass through F, and a new focus node
is selected. In the event called type 3, the edge of the current
focus node ceases to be admissible, and the edge with its end-
point F is removed from the subgraph G.

3. That is, for any Bug-type algorithm that uses a contact sensor, there exists
an obstacle course where the algorithm generates a path at least that long.

LeEMMA 2. Using unlimited sensor range, TangentBug gen-
erates a piecewise-linear path.

Proof. First, consider the motion-toward-the-target mode.
During this mode of motion, the robot moves toward the cur-
rent focus node F. The focus node remains the same obstacle
vertex until an event of the three types mentioned above oc-
curs. We show in the sequel that these events occur only
at a discrete set of points along the robot’s path. Hence the
path is piecewise linear in this mode of motion. Next, con-
sider the boundary-following mode of motion. The boundary-
following direction is fixed, and the motion direction changes
only at the obstacle vertices. Hence the robot’s path during
boundary-following is also piecewise linear. Finally, during
the transition phase the robot moves in a straight line from a
leave point L; to the transition point Z;. [

We now consider separately the number of direction
changes associated with the three types of events, starting
with the type 1 events.

LEMMA3. During motion toward the target, there are finitely
many direction changes due to type 1 events.

Proof. According to Lemma 1, the distance of the robot
from the target, d(x,T), decreases monotonically along
motion-toward-the-target segments. Thus the robot may visit
any obstacle vertex at most once. Since type 1 events occur
when the robot reaches a convex obstacle vertex, the number
of these events is finite, (1

Next, we show that the number of direction changes as-
sociated with type 2 events (a change of focus node due to
shortest-path consideration) is finite. We first characterize
the locally shortest path. Recall that the angmented graph
is the subgraph G1, augmented with virtual edges from the
nodes of G1 to T. Recall, too, that the length of a virtual
edge from a node V is the length of the shortest path from V
to T, based on the currently visible obstacles. Suppose now
that one of the visible obstacles lies between the robot and the
target. This obstacle, called the blocking obstacle, induces
two shortest-path candidates on the augmented graph. The
first, called the left shortest path, is the shortest path from x
to T that circumvents the blocking obstacle from its left side.
The second, called the right shortest path, is the shortest path
that circumvents the blocking obstacle from its right side. We
use the following notation. The first node on the left and right
paths is denoted V and Vg, respectively. The left and right
endpoints of the blocking obstacle are always nodes of the
LTG, and these nodes are denoted By and Bg. We need the
following property of the shortest path.

LEMMA 4. When a blocking obstacle exists, the augmented
graph contains a left path if and only if the edge that connects
x with By is admissible. In that case, the left shortest path
passes through By . A similar result holds for the right short-
est path, which passes through Bpg.
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Proof. Consider the left path. It can be verified that the
shortest path to T, considering only the visible obstacles, al-
ways passes through an endpoint of the blocking obstacle
(Kamon, Rimon, and Rivlin 1995). Hence if the edge [x, Br]
is admissible, the left shortest path must pass through this
edge. If the edge [x, Br] is not admissible, the angle « be-
tween the edge [x, By ] and the line segment [x, T] satisfies
a > 90°. It follows that all the LTG edges to the left of [x, T']
are also nonadmissible, since the angles between these edges
and the line [x, T'] exceed 90°. Hence there is no left path on
the augmented graph. A similar argument holds for the right
path. [J

The next lemma characterizes the ways in which type 2
events can occur.

LEMMA 5. The events of type 2 occur only when an LTG
node, which is either a tangent or an occlusion node, 1s re-
moved or added to the LTG.

Proof Sketch. In the proof (which appears in the appendix),
we consider two cases. In the first case, the robot moves from
Xy to X in a way that keeps all the TG nodes fixed. As
lustrated in Figure 7a, suppose that at X the left path is
shorter than the right path. The left and right paths from
X pass through the same nodes V; and Vg. This, together
with an application of the triangle inequality to the nodes
Xo, X1, Vg, implies that the left path from X is shorter than
the right path from X,. Hence the direction of ‘motion at
X remains toward V. In the second case, the robot moves
from X to X| toward By, such that the other endpoint, Bg,
is an occlusion node that slides along an obstacle edge. As
illustrated in Figure 7b, the length of the left path through
B only decreases during this motion, while the length of the
right path through Bg only increases. Hence the left path
remains shorter than the right path, and the robot retains its
direction toward By. []

We are now ready to show that type 2 events cause finitely
many direction changes. For a given obstacle edge e, let the
extended edge of e be the line segment that extends from e
into the free space.

LEMMAG6. During motion toward the target, there are finitely
many successive direction changes due to type 2 events.

Proof Sketch. In the proof (which appears in the appendix),
we note that a node is removed or added to the LTG (a pos-
sible type 2 event) in one of the following two ways. When
the robot crosses an extended edge, both tangent nodes and
occlusion nodes can change. When the robot crosses a bitan-
gent edge, which is the line segment in the free space tangent
to two convex obstacle vertices, only occlusion nodes can
change. First, we show that there is no change of direction
when the robot crosses a bitangent edge. Then we show that if
the crossing of an extended edge causes adirection change, the
new direction must be along the extended edge the robot has
just crossed. The robot then traces the extended edge until it

crosses another extended edge, or until an event of some other
type occurs. Since the extended edges form a fixed arrange-
ment of lines, the number of successive direction changes due
to type 2 events is finite. [

The next lemma discusses the type 3 events, where the
edge containing the focus node ceases to be admissible.

LEMMA7. During motion toward the target, there are finitely
many type 3 events.

Proof Sketch. Let a blocking extended edge be an extended
edge that starts at a convex vertex of the blocking obstacle.
The blocking extended edges partition the free space into cells.
In the appendix, we first consider the case where the robot is
moving in the interior of a cell, illustrated in Figure 8a. Sup-
pose a type 3 event occurs at the point Xo while the robot is
moving toward B;°. Now the robot continues toward By and
reaches a point X1, which still lies in the interior of the cell.
We show that if a second type 3 event occurs at X, all the
LTG nodes V at X satisfy d(V, T) > d(Xy, T). This con-
dition implies that the robot must have switched to boundary-
following at some earlier point. Hence, at most, one type 3
event can occur in the interior of a cell. We then consider
the case illustrated in Figure 8b, where a type 3 event occurs
while the robot is moving along a blocking extended edge.
As the figure shows, after the type 3 event occurs, the robot’s
new direction is toward the other endpoint of the blocking
obstacle, and the obstacle edge ¢ becomes invisible. Thus

each time the robot moves away from a blocking extended

edge, some obstacle edge e becomes invisible. Furthermore,
until the robot reaches one of the endpoints of the blocking
obstacle (a type 1 event), an obstacle edge that has become
invisible cannot become visible again. Thus the number of

type 3 events until a type 1 event occurs is finite. Since ac- !

cording to Lemma 3 the number of type 1 events is finite, the -

total number of type 3 events is also finite. [J

The following proposition characterizes the path of Tan-
gentBug during motion toward the target.

PROPOSITION 2.
toward-the-target segment has finite length.

Proof. TangentBug generates a piecewise-linear path.

Using unlimited sensor range, each motion-

Hence, it suffices to show that the path consists of finitely

many linear segments of finite length. Each linear segment
corresponds to a particular direction of motion. According
to Lemmas 3 and 7, the number of direction changes due to
type 1 and type 3 eventsis finite. According to Lemma 6, there
are finitely many successive type 2 events. Type 2 events are
succeeded either by type 1 or type 3 events, or by termination
of the motion toward the target. Hence there are finitely many
direction changes due to type 2 events in each moticn-toward-
the-target segment. Thus there are finitely many linear seg-
ments in each motion-toward-the-target segment. The length
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this part of the blocking
obstacle is added

when the robot moves
from X, to X

(b)

Fig. 7. There are no type 2 events (a) when the LTG nodes remain fixed, and (b) when an occlusion node slides along an.

obstacle edge.
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()

Fig. 8. A type 3 event (a) while moving between blocking extended edges; and (b) while moving along a blocking extended edge.

of each linear segment is finite, since the robot moves toward
a fixed focus node. O

The next proposition characterizes the behavior of Tan-
gentBug during the boundary-following mode of motion.

PROPOSITION 3. Using unlimited sensor range, each
boundary-following segment has finite length. Moreover,
if the target T is reachable from the point where the robot

switches to boundary-following, the leaving condition will
cause the robot to leave the obstacle.

Proof Sketch. Let © denote the boundary of the obstacle
being followed. By definition of TangentBug, the robot goes
around O at most once before it terminates its motion. In
Kamon, Rimon, and Rivlin (1995), we show that the length
of this segment is bounded by the perimeter of the obstacle
(plus a term that is bounded by the distance |S—T'||). In the
appendix, we focus on showing that the leaving condition,
d(V,T) < dpu(T) for some V € LTG, is satisfied during
Fhe boundary-following. First we consider the case where T
ts visible from some point Q € @. Since the robot follows @
in a fixed direction, it must cross the line segment [Q, T'], and
at the crossing, 7 becomes a node of the LTG. Therefore the
leaving condition will hold in this case. Next we consider the

case where T is notdirectly visible from any pointof 0. LetC
be a pointon @ which is closestto 7. Let C’ be the point on the
neighboring obstacles which is the closest to C along the line
segment [C, T'). During the boundary-following, the minimal
distance to T satisfies dpin (T') > d(C, T). Since T is reach-
able from ¢, it must be possible to move from C directly
toward T. Hence d(C’, T) < d(C, T), and subsequently,
d(C’, T) < dpmin(T). The leaving condition is therefore sat-
isfied when C’ becomes a node of the LTG. The remainder of
the proof consists of showing that C’ must become a node of
the LTG during the boundary-following. (J

We have shown that both modes of motion terminate after
a finite-length path. Next, we show that there are finitely
many segments of these motion modes. The following lemma

and its corollary give relevant properties of the condition for
switching between the two modes.

LEMMA 8. Every switch point P;, where the robot switches
from motion toward the target to boundary-following, has a
corresponding local-minimum point M; of the distance func-
tion d(w, T), suchthat d(M;, T) <d(P;, T).

Proof. At the switch point P;, all the nodes V of the sub-
Since the robot

graph Gi satisfy d(V,T) > d(F,T).
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switches to boundary-following at P;, there must be a block-
ing obstacle between P; and T'. Let Q be the point where the
line segment [ P;, T] intersects the blocking obstacle. Clearly
d(Q,T) < d(P;,T). Since the nodes V of G; satisfy
d(V,T) > d(P;, T), the endpoints of the blocking obsta-
cle satisty d(Br, T) > d(P;, T),and d(Bgr, T) > d(P;, T).
Therefore, d(Br, T) > d(Q, T),and d(Bgr, T) > d(Q, T).
Since the blocking obstacle is a continuous curve whose end-
points are By, and Bpg, there must be a local-minimum M; of
d(w, T) somewhere on the blocking obstacle. Since the point
Q satisfies d(Q, T) < d(P;, T), the local minimum that is
the closest to T satisfies d(M;, T) < d(P;, T). O

COROLLARY 1. Let M; be the local minimum of d(w, T)
associated with the switch point P;. Then the distance to the
target decreases between successive local-minimum points,
thatis, d(Mi4+1, T) < d(M;, T).

Proof. Starting at P;, the robot follows an obstacle bound-
ary, leaves it, and then performs a transition phase fol-
lowed by motion toward the target until it reaches the next
switch point P;r). During the initial boundary-following,
dmin(T) < d(M;, T). The leaving condition holds when
an LTG node, Vigaye, satisfies d(Viegve, T) < dpin(T). In
the transition phase, the robot moves toward Viggye until it
reaches a point Z; that satisfies d(Z;, T) < dmu(T). The
motion toward the target is resumed at Z;. According to
Lemma 1, the distance d(x, T) decreases during motion to-
ward the target. Hence d(P;iy1, T) < d(Z;, T). According
toLemma8,d(M;+1, T) <d(Pi+1,T). Thusd(M;+1,T) <
d(Pit1, T) <d(Z;, T) < dmin(T) < d(M;, T), and the re-
sult follows. [}

The following theorem asserts that TangentBug always ter-
minates.

THEOREM 1. Using unlimited sensor range, TangentBug al-
ways terminates after following a finite-length path.

Proof. First, we show that there are finitely many segments
of each motion mode. According to Lemma 8, every switch
point P; is associated with a local-minimum point M; of
d(w, T). According to Corollary 1, d(M;, T) decreases at
successive local-minimum points. Thus each point M; is
associated with at most one switch to boundary-following.
Since the number of local minima of d(w, T) is finite, the
path consists of finitely many boundary-following segments.
Since two consecutive boundary-following segments are in-
terleaved by a single motion-toward-the-target segment and a
single transition segment, there are also finitely many motion-
toward-the-target and transition segments. Next, consider the
length of each motion segment. Proposition 2 guarantees that
the path length of each motion-toward-the-target segment is
finite. The path length of each transition phase is finite be-
cause the robot moves toward a fixed focus point. Proposition
3 guarantees that the path length of each boundary-following

segment is finite. Hence TangentBug always terminates after
a finite-length path. [J

The following theorem asserts that TangentBug is
complete.

THEOREM 2. Using unlimited sensor range, TangentBug al-
ways finds the target if it is reachable from the start point.

Proof. As discussed in the proof of Theorem 1, there are
finitely many boundary-following segments. If T is reachable
from the start point, Proposition 3 guarantees that the leaving
condition will cause the robot to terminate each boundary-
following segment and leave the obstacle boundary. Since
every such segment is followed by a transition phase, there
is a last transition phase. The last transition phase either
terminates at T, or is followed by the last motion-toward-the-
target segment, which terminates at 7'. [J

Finally, we discuss an upper bound on the path length of
TangentBug, making the following two assumptions. Givena
vector v, let f)/:\v /llvll. The nodes V of the subgraph G sat-
isfy (V/—\x)(T —x) > 0, where x is the current robot location.
We assume that the subgraph G is further restricted to the
nodes V that satisfy (ﬁ)-(ﬁ\x) > y, where y is a small
positive parameter. The second assumption is concerned with
the leaving condition. The robot is allowed to seek candidate
nodes which satisfy the leaving condition only within a range
of p, where p is a positive and finite parameter.

PROPOSITION 4. Using unlimited sensor range and under the
given assumptions, an upper bound L,,, on the path length
of TangentBug is

1
Liax = (1 + —) IS=Tl+ Y # Minima; x (T; + p),
Y iel
(D

where I is the index set of the obstacles that intersect the disc
Dr, T1; is the perimeter of the i™ obstacle in I, and # Minima;
is the number of local minima of d(w, T) in Dy along the ith
obstacle boundary. (Dr is the disc of radius ||S—T || centered
atT.)

Proof Sketch. First, consider the term %ll S—T . The robot
moves only along admissible LTG edges, whose angle o with
respect to the direction toward T satisfies cosa > y. Hence
the ratio between the decrement in d(x, T') and the distance
traveled along the path is bounded by y. Since d(x, T) de-
creases monotonically during the robot’s motion, 3,1—||S —T|
bounds the total length of the motion toward the target seg-
ments. Next, consider the term [|S—T || + 3", _ 7 ff Minima; x
IT;. We showed in Proposition 1 that the number of boundary-
following segments is bounded by Y, 74 Minima;. As an
intermediate step, consider the path length that would be gen-
erated if the robot turns its range sensor off at the switch
points, and performs the boundary-following using a contact
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sensor. In this case, every boundary-following segment con-
sists of a subsegment where the robot moves from a switch
point P; toward T until it hits an obstacle at a point H;, and
a subsegment where the robot follows the obstacle bound-
ary. The length of each boundary-following subsegment is
bounded by the obstacle’s perimeter. The accumulated sum
of the [ P;, H;] subsegments is bounded by [[S—T||. When
arange sensor is used during the boundary-following, the re-
sulting path can only be shorter than the path generated with a
contact sensor. Thus |S—T'|| + Y, 7t Minima; x IT; bounds
the total length of boundary-following segments. Last, the
length of each transition phase is bounded by p, and the term

}:i el ff Minima; x p bounds the total length of the transition
phases. 0

The reader should note that eq. 1 is only a worst-case bound
on the performance of TangentBug. The average performance
of TangentBug is characterized in the next section.

5. Experimental Results

The experimental study of TangentBug consists of simula-
tions and experiments on a mobile robot. The simulations
study the dependence of TangentBug’s paths on the sensor
range R, and compare TangentBug with the classical VisBug
algorithm. The experiments demonstrate the practical useful-
ness of the algorithm, and we discuss several details of the
implementation.

5.1. Simulation Results

We tested TangentBug on the following three classes of en-
vironments. The first class consisted of disjoint convex ob-
stacles (Fig. 9); the second class consisted of mazelike obsta-
cles (Fig. 10); and the third class consisted of obstacles with
“officelike” shapes (Fig. 11). Nine environments were con-
structed for each class, and 100 randomly chosen start/target
points were used in each environment, giving a total number
of 2,700 different paths. Furthermore, five maximal detection
range values, varying from 0 to oo, were tested on each of the
2,700 paths. More information about the simulated environ-
ments is provided in Kamon, Rimon, and Rivlin (1995).

For comparison, we also tested the classical VisBug al-
gorithm on the same sample environments. We have im-
plemented the VisBug21 version of VisBug, described in
Lumelsky and Skewis (1990). This algorithm uses the range
data to make local shortcuts relative to the path that would
be planned by the contact-sensor algorithm Bug?2 (Lumelsky
and Stepanov 1987). Under Bug2, the robot moves directly
toward the target until it hits an obstacle. Then it follows
thft obstacle boundary using a predefined direction (clock-
Wlse), until a leaving condition holds. The leaving condition
Is tested only on the line [S, T), and it guarantees that the
distance between the hit points and 7' decreases monotoni-
cally. We have also tested a modified version of VisBug, in

Fig.9. Simulation results using unlimited sensor range among
convex obstacles: (a) VisBug (path length 1.52); (b) VisBug
with local turning (path length 1.06); and (c) TangentBug
(path length 1.00).
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which the boundary-following direction is chosen as follows.
When the robot hits an obstacle, it calculates a segment of
length € tangent to the obstacle boundary at the hit point. If
the left endpoint of the tangent segment is closer to 7" than the
right endpoint, the robot turns left and follows the boundary
in a clockwise direction. Otherwise, the robot turns right and
follows the boundary in a counterclockwise direction.

The results of running the three algorithms on the three
classes of environments are summarized in Tables 1, 2, and
3. The paths produced by TangentBug were shorter than the
paths produced by VisBug in all tested scenarios. Increasing
the sensor detection range, R, improved the performance of
the three algorithms. But TangentBug produced shorter paths
for all values of R. Each table presents the average path
length, measured over 900 runs for the specified detection
range, relative to the globally shortest path in the environment.
We also present the ratio (in percentages) between the average
path lengths of TangentBug and VisBug. This ratio indicates
an average improvement factor of three for unlimited sensor
range in the officelike environments.

The simulations also provide us with the following insight
into the dependence of the path length on the sensor detection
range R. In the simple environments consisting of convex
obstacles, the paths produced by TangentBug using unlimited
sensor range resemble the globally optimal paths. In our ex-
periments, TangentBug’s paths were identical to the globally

Table 1. TangentBug Performance among Convex Obsta-
cles, Compared to VisBug?®

VisBug
+ Tangent- TangentBug
R VisBug  Turning Bug VisBug
0 1.56 1.17 1.09 70%
50 1.36 1.09 1.04 76%
100 1.31 1.07 1.03 79%
200 1.29 1.06 1.03 80%
00 1.28 1.06 1.03 80%

a. Five detection ranges are tested in environments whose width and

height are 800 x 700 units. The average path length is expressed relative
to the globally shortest path. The left column presents the ratio (in percent-
ages) between the average path lengths of TangentBug and VisBug.

Table 2. TangentBug Performance in Mazelike Environ-
ments, Compared to VisBug

VisBug
+ Tangent-  TangentBug

R VisBug Turning Bug VisBug

0 3.82 3.63 343 90%

50 3.32 317 2.82 85%
100 2.71 2.59 2.02 75%
200 2.21 2.10 1.45 66%

00 2.10 2.02 1.34 64%

Table 3. TangentBug Performance in Officelike Environ-
ments, Compared to VisBug

VisBug
+ Tangent-  TangentBug

R VisBug Turning Bug VisBug

0 9.86 8.38 7.10 2%

50 8.78 7.40 5.52 63%
100 7.28 6.11 3.64 50%
200 522 4.34 1.48 28%

o 4.14 3.36 1.38 33%

optimal ones in 69% of the runs, and their average path length
was 1.03 relative to the optimal path length. In these simple
environments, the algorithm used mostly the motion-toward-
the-target mode, implying that the range data was continu-
ously used for choosing the locally optimal direction. The
minor improvement in the path length as the sensor range
increases suggests that in simple environments small sensor
range is sufficient, since in such environments the local data
usually leads to the globally correct decisions. In the more
complex environments, the three algorithms achieved signif-
icant local shortcuts by scanning the boundaries of concave
obstacles instead of actually following them; hence the effect
of increasing the sensor detection range was more pronounced
in the complex environments.

Note that TangentBug uses the range data more effectively
than the other algorithms. For example, Figure 12 shows the
paths generated by TangentBug in an officelike environment
for increasing values of R. The advantage of TangentBug is
more apparent in the officelike environments for two reasons:
first, these environments contain obstacles with long perime-
ters, which cause long paths when the boundary-following
direction is not the globally correct one. TangentBug pro-
duces shorter paths in these environments by circumventing
obstacles using the motion-toward-the-target mode, without
commiitting the robot to a fixed boundary-following direction.
TangentBug also chooses the boundary-following direction
based on all the local information, and it can leave an ob-
stacle boundary much before the line [S, T] is visible. The
second reason is that officelike environments contain some
built-in regularity, which makes the local information more
relevant to the globally correct decisions.

Finally, we note that the variation in the performance of
TangentBug among the sample environments 1s quite small.
Table 4 shows the minimal, average, and maximal ratios be-
tween the average path-lengths of TangentBug and VisBug
for each class of environments, using unlimited sensor range
and considering all nine sample environments of each class.
The minimal and maximal values are the ratios between av-
erage path lengths of 100 simulated runs of TangentBug and
VisBug in specific environments.
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Table 4. Minimal, Average, and Maximal Ratios between Average Path Lengths of TangentBug and VisBug Using
Unlimited Sensor Range, Computed over the Sample Environments in Each Class (in percentages)

Minimal Average Maximal
Class Ratio Ratio Ratio
Convex obstacles 75 80 83
Maze obstacles 56 64 72
Office obstacles 25 33 38

5.2. Experiments in a Real-World Scenario

To demonstrate the practical usefulness of TangentBug, we
have implemented and tested the algorithm on a Nomad 200
mobile robot. The robot was equipped with a ring of 16 sonar
sensors and a ring of 16 infrared range sensors that were used
for collecting the range data. In the experiments, no model
of the environment was supplied to the robot, and its deci-
sions were based solely on the range data read by the sensors.
To adjust the algorithm to the available sensory information,
we made the following slight modifications. During motion
toward the target, only the LTG edges that pointed toward
T,04e OF were tangent to the blocking obstacle were explic-
itly constructed. (The algorithm is still complete under this
restriction.) Further, given the low (22.5°) angular resolution
of the sensors, we estimated the direction of the blocking-
obstacle endpoints as follows. When no blocking obstacle
was detected, T,oq. was placed along the direction toward T'.
When a blocking obstacle was detected, the right (left) edge
was chosen as the first sensor direction, which indicated that
there was no obstacle to the right (left) side of the blocking
obstacle.

We performed many experiments with the robot, and one
such experiment is shown in Figure 13. In this experiment the
distance from the start to the target was 5.7 m, and the robot
had to maneuver around two obstacles that blocked its way
to the target. The path is shown in Figure 13b as a bold line,
and the sensed obstacles are rendered as an accumulation of
sonar readings along the path. Although the sonar measure-
ments contained substantial noise, they were mostly used for
locating the endpoints of the blocking obstacle, not for ex-
act distance measurements. The following data was averaged
over five successive runs in this experimental setting. The av-
erage path length was 6.1 m. The average run time was 52 sec,
giving an average speed of 11.5 cm/sec. We also measured
the time it took the robot to perform a basic motion step of
the algorithm. This time was 175 msec during motion toward
the target, and 390 msec during the boundary-following.

6. Concluding Discussion

We presented TangentBug, a range-sensor-based globally
convergent navigation algorithm for 2-DOF mobile robots.
The algorithm expands on the existing Bug-family algorithms
intwo respects. First, TangentBug is specifically designed for

using range data. Second, TangentBug incorporates the no-
tion of the locally shortest path into the general Bug paradigm.
We introduced a local range-data-based version of the clas-
sical tangent graph, termed the local tangent graph or LTG,
and reformulated the two basic behaviors of the Bug family
in a way that continuously uses the LTG. We also presented
a new convergence mechanism that was based on local min-
ima of the distance from the target along obstacle boundaries,
and defined new transition conditions that implemented this !
convergence mechanism.

The simulations show substantial improvement in the av-
erage path length as the sensor’s detection range increases; |
for instance, we observed an improvement from 7.10 to 1.38 s
in officelike environments. The simulations also indicated a .
significant advantage of TangentBug relative to the classical |
VisBug algorithm. For example, in officelike environments

]

the average path length is 33% relative to VisBug, using in- |
finite sensor range. We have also implemented TangentBug 5
on a mobile robot, demonstrating the usefulness of the algo- |
rithm. TangentBug is especially simple to implement, since it
uses purely reactive decisions that are based on the currently -
visible obstacles. Moreover, the globally convergent behav- -
ior is integrated into the algorithm in a way that minimizes :
the need for accurate global positioning, which is difficult to
obtain with today’s sensors.
Finally, we note that TangentBug provides a framework .
for various extensions. For example, the algorithm can be:
adapted for navigating among piecewise-smooth obstacles,
and can be adjusted for practical use in dynamic environ-
ments. Additional information can be easily incorporated to,
improve performance in practical scenarios. For example, by
modifying the expected path length from the LTG nodes to the,
target, based on a nominal global model of the environment'
or accumulated sensory data, we expect even better perfor-
mance. Such extensions are currently under investigation.

Appendix: Proof Details

Fig.
The following lemma characterizes the ways in which type 2 in 3

events can occur. The length of a virtual edge from anode V (a)
of G to T is denoted e len (V).

LEMMA 9. Type 2 events occur only when an LTG node,

which is either a tangent or an occlusion node, is removed ot
added to the LTG.
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Proof. Consider a motion of the robot such that no node is
removed or added to the LTG. In this case, the LTG nodes
either remain fixed, or some occlusion nodes slide along ob-
stacle edges. First, suppose that the robot moves from Xg to
X in a way that keeps all the LTG nodes fixed. Without loss
of generality, assume that the shortest path from Xo to T on
the augmented graph is the left path. Since the left path is
shorter than the right path, we have that

1 Xo — Vil +edenxy (VL) < | Xg — Vgl + eleng,(Vg).
)

Since all the LTG nodes remain fixed as the robot moves from
Xo to X, the left and right paths from X pass through the
same nodes V;, and Vz. Moreover, the lengths of the expected
paths from V; and Vg to T do not change as the robot moves
from X to X ;. Substituting e_leny, (V) = e_lenx, (Vr) and
e_leny,(Vg) = e_leny,(Vg) in eq. (2) gives

[ Xo = VLl + elenx, (VL) < || Xo — Vg|| + elenx, (VR).
3

The term || Xg — V. |} on the left side can be written as || Xo —
Vil =11 X1 — V| + 11 X1 — Xoll, since the points X, X;, and
Vi, lie on the same straight line. Hence eq. (3) can be written
as | X1 — Vil +edeny (V1) < [ Xo — Vel — | X1 — Xolt +
elenx, (Vg). But | Xo — Vil < [ Xo ~ X1l + 1 X1 — V&l
according to the triangle inequality. Hence

X1 — Vil +elenx, (VL) < [ X1 — Vel + elenx, (VR).

Thus the left path from X is shorter than the right path from
X1, and the direction of motion remains toward V, (Fig. 7a).

Now we show that no event of type 2 occurs when an occlu-
sion node slides continuously along an obstacle edge. Without
loss of generality, assume that the shortest path from Xg to T
on the augmented graph is the left path. Suppose that Bg is an
occlusion node which slides on an edge of the blocking obsta-
cle. Asillustrated in Figure 7b, we denote by By’ and By' the
point B as seen from Xg and X;. The part of the blocking-
obstacle boundary that is visible from X1, (B, B? ), includes
all the visible boundary from Xo, (B, By'), and extends to
the right side of (By, By'). Therefore the path length from
Ve to T via sz‘ is longer than via B;;O. (The same argument
holds for more complex situations, where the shortest path
from Bfel to T is not the straight line [B;el’ T1.) Hence the
length of the shortest path from Bg to T increases when the
robot moves from Xg to X1, e_lenx,(Vr) > elenx,(VR).
Based on Lemma 4, the left path leads directly toward Bp.
Therefore e_leny, (V) = e.lenx, (V). Given that eq. (2)
holds at Xy, it follows that eq. (3) holds true. Hence, using
an argument similar to the one used above, the left path re-
mains shorter than the right path at X, and the robot retains
its direction toward By . [J

The next lemma asserts that type 2 events cause finitely
many direction changes.

LEMMA 10. During motion toward the target, there are
finitely many successive direction changes due to type 2
events.

Proof. According to Lemma 9, type 2 events occur only
when an LTG node is removed or added to the LTG. Such a
change in the LTG can occur in one of the following two ways.
When the robot crosses an extended edge, both tangent nodes
and occlusion nodes can change. When the robot crosses a
bitangent edge, which is the line segment in the free space
tangent to two convex obstacle vertices, only occlusion nodes
can change.

First, consider the case where the robot crosses a bitangent
edge. According to Lemma 4, the candidate shortest paths
always lead directly to the endpoints of the blocking obstacle.
Hence the direction of motion can change only when the oc-
clusion node which is removed or added to the LTG is one of

the endpoints of the blocking obstacle. If an occlusion node
appears on the blocking obstacle, it must be that just before

the crossing some obstacle was lying between the robot and
the blocking obstacle. But this contradicts the definition of
the blocking obstacle, which is visible in its entirety from the
current robot location. Hence the crossing of a bitangent edge

cannot cause the addition of an occlusion node to the blocking :
obstacle. The crossing also cannot cause the removal of an |
occlusion node. Rather, the crossing transforms an occlusion
node into a tangent node in the LTG. Since the location of the !

[ RS _

-

node does not change in this event, there is no change in the

shortest path to T, and the robot continues in the same direc-
tion of motion. Thus there is no change of direction when the

robot crosses a bitangent edge.

Consider now the crossing of an extended edge. The robot

always moves toward an endpoint of the blocking obstacle.
Suppose that while moving toward the left endpoint By, the
robot crosses an extended edge. Suppose, too, that the cross-
ing causes a change in an LTG node which triggers a change of
direction. Using Lemma 4 again, the candidate shortest paths

always lead directly to the endpoints of the blocking obstacle.
Thus, only a change in By, or Bg can possibly cause a change :
of direction. Since the robot was moving toward By , the other ;
endpoint, Bg, must have changed when the robot crossed the -
extended edge. Furthermore, the change in the LTG nodes

must have occurred along the extended edge. Hence, imme-
diately after the crossing, the robot must be moving toward
Br along the extended edge.* The robot then traces the ex-
tended edge until it crosses another extended edge, or until
an event of some other type occurs. Since the extended edges
form a fixed arrangement of lines with a finite number of in-
tersection points, the number of successive direction changes
due to type 2 events is finite. (J

4. More precisely, after the robot crosses the extended edge, it moves toward p

Bp in a motion that resembles a tracing of the extended edge.
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The next lemma discusses the type 3 events.

LEMMA 11. During motion toward the target, there are
finitely many type 3 events.

Proof. Let a blocking extended edge be an extended edge
that starts at a convex obstacle vertex of the blocking obsta-
cle. The blocking extended edges partition the free space into
cells. We consider separately the case where the robot is mov-
ing in the interior of a cell, and the case where it is moving
along a blocking extended edge. For simplicity, we ignore
the nongeneric case where the robot is crossing a blocking
extended edge such that a type 3 event occurs at the crossing
point.

First, consider the motion in the interior of a cell, illustrated
in Figure 8a. We wish to show that at most one type 3 event
occurs in the interior of a cell during each motion-toward-
the-target segment. Suppose a type 3 event occurs at the
point Xo while the robot is moving toward the node Bj'.
Since the edge (X, Bzo] ceases to be admissible, Xp is a
minimum of the distance function d(w, T') along [ Xo, Bi"].
In particular, we have that d(B;°, T) > d(Xg, T). Since
the angle o« between the edge [Xo, Bf’} and the line segment
[Xo, T1is 90°, all the LTG edges to the left of [X¢, B}] also
become nonadmissible. Thus all the LTG nodes V to the
left of the line segment [ Xy, T'] satisfy d(V, T) > d(Xg, T).
Now the robot continues toward the right endpoint By’ and
reaches a point X, which still lies in the interior of the cell.
Since the distance to T decreases during motion toward the
target, d(Xy, T) < d(Xo, T).

Assume by contradiction that a type 3 event also takes
place at X|. Using an argument similar to the one given
above, all the LTG nodes V to the right of [ X, T] satisfy
d(V,T) > d(X;, T). Since the robot has not crossed any
blocking extended edge, the region in the free space bounded
by the edges [Xo, B;°1, [Xo, Bx], and the blocking obstacle
are also visible from X; (Fig. 8a). Moreover, there are no
LTG nodes in the interior of this region. This information,
together with the inequality d(X, T) < d(Xo, T), implies
that all the LTG nodes V at X1 satisfy d(V, T) > d(X1, T).
But this is the condition that terminates the motion-toward-
the-target mode and initiates the boundary-following mode.
Hence the robot must have switched to boundary-following
mode at some earlier point. Thus, at most one type 3 event
can occur in the interior of a cell.

Consider now the case where a type 3 event occurs while
the robot is moving along a blocking extended edge. We
already know that the robot must be moving toward one of
Fhe endpoints of the blocking obstacle. Suppose it is mov-
ing along a blocking extended edge toward the right endpoint
B, as illustrated in Figure &b. By definition of a blocking
extended edge, there exists an edge e of the blocking obsta-
cle along the blocking extended edge. After the type 3 event
occurs, the robot’s new direction must be toward the left end-

—_ : .
estoward point By . Since the robot leaves the blocking extended edge

and moves toward By , the obstacle edge e must become invis-
ible, as shown in Figure 8b. Thus, each time the robot moves
away from a blocking extended edge, some obstacle edge ¢
becomes invisible. Furthermore, until the robot reaches one
of the endpoints of the blocking obstacle (a type 1 event), an
obstacle edge that has become invisible cannot become visible
again.

‘We can therefore summarize the two cases and say that the
number of type 3 events until a type 1 event occurs is finite.
Since according to Lemma 3 the number of type 1 events is
finite, the total number of type 3 events is also finite. [J

The next proposition characterizes the behavior of Tan-
gentBug during the boundary-following mode of motion.

PROPOSITION 5. Using unlimited sensor range, each
boundary-following segment has finite length. Moreover, if
the target T is reachable from the point P; where the robot
switches to boundary-following, the leaving condition will
cause the robot to leave the obstacle.

Proof. Let @ denote the boundary of the obstacle being fol-
lowed. (The obstacle can have several boundary components,
and O is the component visible to the robot.) By definition of
TangentBug, the robot goes around © at most once before it
terminates its motion. In Kamon, Rimon, and Rivlin (1995),
we show that the length of this segment is bounded by the
perimeter of the obstacle, plus a term that is bounded by the
distance || S — T ||. We now focus on showing that the leaving
condition, d(V, T) < dpin(T) for some V € LTG, is satisfied
during the boundary-following. First consider the case where
T is visible from some point O € . Since the robot follows
@ in a fixed direction, it must cross the line segment [ Q, T']; at
the crossing, T becomes a node of the LTG. Hence, the leav-
ing condition will hold in this case. Consider next the case
where T is not directly visible from any point of &. Let C be
apoint on @ which is closest to T'. Let C’ be the point on the
neighboring obstacle which is the closest to C along the line
segment [C, T (Fig. 14). During the boundary-following, the

minimal distance to T satisfies dp;n(T) > d(C, T). Since T

is reachable from P;, it must be possible to move from C

directly toward T. Hence d(C’',T) < d(C, T), and subse-

quently d(C’, T) < dpin(T). The leaving condition is then

satisfied when C’ becomes a node of the LTG. It therefore

suffices to show that C’ must become a node of the LTG.

For simplicity, assume that C” is not visible from the switch
point P;. The point C’ is visible from the point C € O. Since
the robot follows the boundary of @ in a fixed direction, it must
cross the line segment [C, C’]. Hence C’ must become visible
during the boundary-following. The robot’s path during this
mode of motion can be partitioned as follows: either the robot
moves in the interior of a straight-line segment which is the
locally shortest path relative to @, or it has just reached the
endpoint of such a segment which is always a convex obstacle
vertex. First, consider the case where the robot is moving
along a straight-line segment. We may assume that C’ lies in
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Fig. 14. When the robot reaches L;, it simulates a smoothing
of the corner while computing the LTG in all the intermediate
directions. The node By scans the obstacle boundary from
By to By, and C’" becomes a node of the LTG during this
scan.

the interior of a neighboring obstacle edge, which is denoted
e. (If C’ is an obstacle vertex, there exists a point C” in
the vicinity of €’ which satisfies the leaving condition and
is not a vertex.) The point C’ can become visible in one of
the following two ways. The first is when an occlusion node
of the LTG slides along e until it reaches C’. At this point,
C' becomes a node of the LTG. Also, C’ can become visible
when the robot crosses the extended edge associated with e,
and this case is considered below.

Next, consider the case where C’ becomes visible as the
robot reaches a convex vertex of the obstacle, as illustrated in
Figure 14. In this case, the visible set and hence, some of the
LTG nodes, change discontinuously. However, according to
the definition of TangentBug, the robot performs the following
“smoothing” operation at the vertex. The robot assumes that
the boundary’s tangent vector changes continuously from the
direction of the edge entering the vertex to the direction of
the edge emerging from the vertex. The robot then computes
the LTG for all the intermediate directions, and as a result the
LTG nodes scan the boundary of the obstacles visible from
the vertex. Since C’ is visible from the vertex, it must become
an LTG node during this scan.

Finally, consider the case where C’ becomes visible when
the robot crosses the extended edge associated with e. In this
case, it is not necessarily true that C’ becomes a node of the
LTG wheniit first becomes visible. To see that C’ does become
a node of the LTG at some point, consider the event where
C” ceases to be visible. (Since C’ was initially invisible, it
must return to being invisible before the robot completes a
loop around the obstacle.) The crossing of the extended edge
associated with e happens only once during the boundary-

following. Hence, at the point where C’ becomes invisible, |
either C’ slides out of sight as an occlusion node of the LTG, or
it disappears because the robot has just left a convex obstacle
vertex. In both cases it must be that C’ is a node of the LTG at
the moment it disappears from sight. Thus, in all three caseg
C’ becomes a node of the LTG, and the leaving condition
becomes valid before the robot completes a loop around the
obstacle. The leaving condition therefore becomes valid after
a finite-length path. O
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