
Lecture 13: Protocol-Based 
Control Systems

Richard M. Murray
Caltech Control and Dynamical Systems

20 March 2009
Goals:

• Describe methods for modeling and analyzing distributed protocols

• Introduce the Computation and Control Language (CCL) as an example

• Explore and analyze protocols written in CCL for cooperative control

Reading:
• E. Klavins, “A Computation and Control Language for Multi-Vehicle Systems”, 

Int’l Conference on Robotics and Automation, 2004.

• E. Klavins and R. M. Murray, “Distributed Computation for Cooperative Control”, 
IEEE Pervasive Computing, 2004.
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NCS Lecture Schedule
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Mon Tue Wed Thu Fri

9:00
L1: Intro to 
Networked 

Control Systems

L5: Distributed 
Control Systems

L7: Distributed 
Estimation and 
Sensor Fusion

L11: 
Quantization and 
Bandwidth Limits

L13: Distributed 
Protocols and 

CCL

11:00 L2: Optimization-
Based Control

L6: Cooperative 
Control

L8: Information 
Theory and 

Communications 

L12: Estimation 
over Networks

L14: Open 
Problems and 

Future Research

12:30 Lunch Lunch Lunch Lunch Lunch

14:00 L3: Information 
Patterns

L9: Jump Linear 
Markov 

Processes

16:00 L4: Graph 
Theory

L10: Packet 
Loss, Delays 
and Shock 
Absorbers
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Cooperative Control Systems Framework
Agent dynamics

Vehicle “role”
•             encodes internal state + 

relationship to current task

• Transition 

Communications graph
• Encodes the system information flow

• Neighbor set 

Communications channel
• Communicated information can be lost, 

delayed, reordered; rate constraints

• γ = binary random process (packet loss)

Task
• Encode as finite horizon optimal control

• Assume task is coupled, env’t estimated

Strategy
• Control action for individual agents

Decentralized strategy

• Similar structure for role update

4

N i(� �α)

α ∈ A

α′ = r(x,α)

G

M
DSMC, 2007

ẋi = f i(xi, ui) xi ∈ Rn, ui ∈ Rm

yi = hi(xi) yi ∈ Rq

yi
j [k] = γyi(tk − τj) tk+1 − tk > Tr

J =
∫ T

0
L(x,α, E(t), u) dt + V (x(T ),α(T )),

ui(x,α) = ui(xi,αi, y−i,α−i, Ê)

y−i = {yj1 , . . . , yjmi}
jk ∈ N i mi = |N i|

{gi
j(x,α) : ri

j(x,α)}

αi ′ =

{
ri
j(x,α) g(x,α) = true

unchanged otherwise.

ui = ki(x,α)
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Distributed Decision Making: RoboFlag Drill
Klavins

CDC, 03

Task description
• Incoming robots should be blocked by 

defending robots
• Incoming robots are assigned randomly 

to whoever is free
• Defending robots must move to block, 

but cannot run into or cross over others
• Allow robots to communicate with left and 

right neighbors and switch assignments

Goals
• Would like a provably correct, distributed 

protocol for solving this problem
• Should (eventually) allow for lost data, 

incomplete information

Status
• Provably correct protocol available in 

perfect information case, using CCL
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Distributed Situational Awareness
Communications complexity
 Maintain “situational awareness”
 Assume point-to-point commun-

ications and that each robot knows its 
own position 

 Q: how many messages are required 
for each robot to keep track of all 
other robots w/in ε?

 A: O(n2) messages (worst case)

Method #1: Distance Modulated Communication - O(n log n)
 Maintain position estimates to within k ||xi – xj||
 Communicate more often with robots that are closer

Method #2: Wandering Communication Scheme - O(n) 
 Only moving robots need to keep track of position
 Robots transfer knowledge when they stop/start

Proof of 
correctness 
using CCL

Klavins
WAFR 02
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Lost Wingman Protocol Verification

Temporal logic specification

• “Lost mode leads to the distance 
between the aircraft always being 
larger than dsep”

Protocol specification in CCL
Use guarded commands to implement finite 

state automaton
Allows reasoning about controlled 

performance using semi-automated theorem 
proving

Relies on Lyapunov certificates to provide 
information about controlled system

Lost wingman in fingertip formation

Comms failure
between 1 and 2
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Models of Concurrency
Petri Nets and Processes
• Standard tool in Manufacturing

Hybrid Automata (Henzinger, 1996)
• Use FSM for discrete states, with dynamic inclusions in 

each “mode” and transitions between states

I/O Automata [Lynch: Book 1996]
• Composition with internal / input / output actions
• Hybrid version is "sophisticated" [Lynch, Segala, 

Vaandrager, Weinberg: HSIII 1996]

UNITY [Chandy & Misra: Book 1988]
• Interleaving-based parallel programming 
• Based on guarded commands [Dijkstra: 1975]
• Uses temporal logic for verification

Temporal Logic of Actions [Lamport: TPLS 1994]
• TL is used for specification and "implementation"
• Sophisticated treatment of fairness constraints
• Timed and hybrid versions not too sophisticated
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Temporal Logic
Description
• State of the system is a snapshot of values of all 

variables

• Reason about behaviors σ: sequence of states of 
the system

• No strict notion of time, just ordering of events

• Actions are relations between states: state s is 
related to state t by action a if a takes s to t (via 
prime notation: x’ = x + 1)

• Formulas (specifications) describe the set of 
allowable behaviors

• Safety specification: what actions are allowed

• Fairness specification: when can a component 
take an action (eg, infinitely often)

Example
• Action: a ≡ x’ = x + 1

• Behavior: σ ≡ x := 1, x := 2, x:= 3, ...

• Safety: x > 0 (true for this behavior)

• Fairness: (x’ = x + 1 ∨ x’ = x) ∧ ◊ (x’ ≠ x)

Properties
• Can reason about time by adding 

“time variables” (t’ = t + 1)

• Specifications and proofs can be 
difficult to interpret by hand, but 
computer tools existing (eg, TLC, 
Isabelle, PVS, etc)

9

 p ≡ always p (invariance)
 ◊p ≡ eventually p (guarantee)
 p → ◊q ≡ p implies eventually q 

(response)
 p → q U r ≡ p implies q until r 

(precedence)
 ◊p ≡ always eventually p 

(progress)
 ◊p ≡ eventually always p 

(stability)
 ◊p → ◊q ≡ eventually p implies 

eventually q (correlation)
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UNITY (Chandy and Misra)
Description
• Specification consists of a set of (possibly 

gaurded) variable assignments
• Behaviors are generated by starting an an initial 

state, then choosing any assignment for which the 
guard is true

• Command (g:r) may be evaluated in any order, at 
any time

• Require that all assignments be applied infinitely 
often in any execution (built in fairness)

• Reason about “programs” using temporal logic

Properties
• Useful for reasoning about systems in which there 

is very asynchronous behavior
• Fairness constraint is a bit too loose for control 

applications; only assume that each command 
executes eventually (instead of once every 
iteration)

10

g3:r3
g4:r4

g7:r7

g6:r6

g1:r1

g5:r5

g2:r2

g8:r8



Richard M. Murray, Caltech CDSEECI, Mar 09 11

P(k1,k2) := {
  initializers
  guard1:rule1
  guard2:rule2
   ...

}

S(k1,k2):=P(k1,k2)+C(k1+1) sharing y,u

"soup" of 
guarded commands

composition = union

non-shared variables 
remain local to 

component programs

CCL: Computation and Control Language
Formal Language for Provably Correct Control Protocols

CCL Interpreter

Formal programming lang-
uage for control and comp-
utation. Interfaces with 
libraries in other languages. 

Automated Verification
CCL encoded in the Isabelle 
theorem prover; basic specs 
verified semi-automatically. 
Investigating various model 
checking tools.

Formal Results
Formal semantics in transition 
systems and temporal logic. 
RoboFlag drill formalized and 
basic algorithms verified.

CCL Protocol for
Decentralized 

Target Allocation
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Scheduling and Composition

12

Program composition:
(I1,C1) + (I2,C2) = ( I1∧I2, C1∪C2 )

EPOCH
Each command is 
executed before any 
are again.

SYNCH(τ)
In any interval, the difference in 
the number of times any two 
commands are executed is ≤ τ.

UNITY
Each command must be 
executed infinitely often.
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include standard.ccl

program plant ( a, b, x0, delta ) := { 
  x := x0; 
  y := x; 
  u := 0.0; 
  true : { 
    x := x + delta * ( a * x + b * u ), 
    y := x, 
    print ( " x = ", x, "\n" ) 
  }; 
}; 

program control() := {
  y := 0.0; 
  u := 0.0; 
  true : { u := -y }; 
}; 

program sys ( a, b, x0 ) := plant ( a, b, x0, 0.1 ) +
                            control ( 2*a/b ) sharing u, y;

exec sys ( 3.1, 0.75, 15.23 ); 

An Example CCL Program

  x = 3.216250
  x = 3.095641
  x = 2.979554
  x = 2.867821
  x = 2.760278
  x = 2.656767
  x = 2.557138
  x = 2.461246
  x = 2.368949
  x = 2.280113
  x = 2.194609
  x = 2.112311
  x = 2.033100
  x = 1.956858
  x = 1.883476
  x = 1.812846
  x = 1.744864
  x = 1.679432
  x = 1.616453

  ...
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program prog3 ( ... ) := 
  prog1 ( ... ) + 
  prog2 ( ... ) sharing x, y, z, ...;

exec prog ( 1.1, 2.0 );

This makes a new program with conjoined 
initial section and includes all clauses from 

prog1 and prog2. x, y and z are shared, 
other vars are local.

Starts the interpreter.

Structure of CCL Programs
program prog1 = {

   declarations

   initial {
     assignments
   }

   guard : { rules }
   guard : { rules }
   ...

};

Declares a new program with name "prog1"

Declare variables and functions to be used.

Initialize state (variables and environment)

Any number of "clauses". Guards are boolean 
expressions and rules are assignments to 

variables or control commands.

n {
  agent 0 gets prog0;
  agent 1 gets prog1;
  ...
}

For the simulator: assign programs to agents
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CCL Language Features (optional)
Variables
• Can be of type constant, number or array 

External functions
• Can be of type function, arrayfunction, boolean, with numerical arguments
• Can link to C/C++ functions
• whoami, time, posx, posy, print, rand, reset, send_mesg, 
clear_box, sin, cos, abs, pos, vel, get_mesg, check_box,...

Expressions
• Numeric (1 + sin(x+y)/time()) or boolean (y[2] < y[3] || false)

Communications

• Mailboxes: send_mesg(to, arg1, ..., argn), recv_mesg (from), 
check_box (from)

Predefined Controllers
• Specified with the controller keyword
• velcontrol, pd, force, pd_vehicle,...

15
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Defensive Zone
0

a b

c

Example: RoboFlag Drill
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Defensive Zone
0

a b

c

i        j

α(j) is too far down 
for i to get

RoboFlag Control Protocol



Richard M. Murray, Caltech CDSEECI, Mar 09

fun r i j . 
  if red[alpha[j]][1] < abs ( blue[i] - 
red[alpha[j]][0] ) 
    then 1 
    else 0
  end;

fun switch i j .  
  r i j + r j i < r i i + r j j 
  | ( r i j + r j i = r i i + r j j 
    & red[alpha[i]][0]  > red[alpha[j][0] );

program ProtoPair ( i, j ) := {

  temp := 0;

  switch i j : {
    temp := alpha[i],
    alpha[i] := alpha[j],
    alpha[j] := temp,
  }

};

program Blue ( i ) := {

  red[alpha[i]][0] > blue[i] & blue[i] + 
delta < toplimit i : {
    blue[i] := blue[i] + delta
  }

  red[alpha[i]][0] < blue[i] & blue[i] - 
delta > botlimit i : {
    blue[i] := blue[i] - delta
  }

};

CCL Program for Switching Assignments

program Red ( i ) := {

  red[i][1] > delta : { 
    red[i][1] := red[i][1] - delta
  }

  red[i][1] < delta : {
    red[i] := { rrand 0 n, rrand lowerlimit 
n }
  }

};
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CCL/Temporal Logic Notation
Temporal logic
• p      always p (invariance)

• ◊p      eventually p (guarantee)

• p → ◊q    p implies eventually q (response)

• p → q U r  p implies q until r (precedence)

• ◊p      always eventually p (progress)

• ◊p      eventually always p (stability)

• ◊p → ◊q     eventually p implies eventually q (correlation)

• ¬p     negation (not p)

• σ⟦F⟧   true if a behavior σ satisfies a formula F

• P ⊨ F ∀σ . σ⟦P⟧ ⇒ σ⟦F⟧  P satisfies F (any behavior consistent with a program 
             ßsatisfies a specified formula)

CCL
• skip    true : ∀v . v’ = v   guarded command that does nothing
• p ↝ q   (p ⇒ ◊q)    “p leads to q”: if p is true, q will eventually be true

• p co q   (p ⇒ [(q’ ∨ skip]) ∧ ◊q’]) if p is true, then next time state changes, q will be true

19
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Safety (Defenders do not collide) 

Stability (switch predicate stays false)

“Lyapunov” stability
• Let ρ be the number of blue robots that are too far away to reach their red robots

• Let β be the total number of conflicts in the current assignment

• Define the Lyapunov function that captures “energy” of current state (V = 0 is desired)

• Can show that V always decreases whenever a switch occurs

Properties for RoboFlag program

Robots are "far enough" apart.

20

V =
[(

n

2

)
+ 1

]
ρ + β β =

n∑

i=1

n∑

j=i+1

γ(i, j) where γ(i, j) =

{
1 if xα(i) > xα(j)

0 otherwise
ρ =

n∑

i=1

r(i, i)
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Sketch of Proof for RoboFlag Drill
More notation:
• Meaning of an action: s [[a]] t ≡ a(∀v : s[[v]] / v, t[[v]] / v’) 

- Updates the state of the system by replacing all unprimed variables in a by their values under the 
state s and replacing all primed variables in a by their values under t

• Hoare triple notation: {P} a {Q} ≡ ∀ s, t . s[[P]] ^ s [[a]] t => t[[Q]]
- True if the predicate P being true implies that Q is true after action a

Lemma (Klavins, 5.2) Let P = (I, C) be a program and p and q be predictates.  If for all 
commands c in C we have {p} c {q} then P ⊨ p co q.

- If p is true then any action in the program P that can be applied in the current state leaves q true

Thm  Prf(n) ⊨  zi < zi+1

- For the RoboFlag drill with n defenders and n attackers, the location of defender  will always be to 
the left of defender i+1.

Proof.  Using the lemma, it suffices to check that for all commands c in C we have {p} c 
{q}.  So, we need to show that if zi < zi+1 then any command that changes zi or zi+1 leaves 
these unchanged.  Two cases: i moves or i+1 moves.  For the first case, {p} c {q} 
becomes

From the definition of the gaurded command, this is true.  Similar for second case. 

21

zi < zi+1 ∧ (zi < xα(i) ∧ zi < zi+1 − δ : z′
i = zi + δ) =⇒ z′

i < z′
i+1
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RoboFlag Simulation
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Observation of CCL Programs
Goal: determine assignments by watching motion
• Assume CCL program describing protocol is known
• Brute force: enumerate all N! possibilities and eliminate

cases that are inconsistent with motion (over time)

Alternative approach: exploit structure
• Keep track of upper and lower bounds for each zi

• Can show this provides a partial order on sets of 
possible assignments

• Extended CCL update law preserves the order:

General case: observers for hybrid systems
• Construct a partial order on discrete states
• Extend CCL program to provide order-isomorphic

map (always possible with power set)
• Can construct observer if system is observable: 

predict + correct on upper/lower bounds (fast)

23

Del Vecchio, Klavins and M
Automatica, 2006

⇒ fast computation

N = 30
alignment error

estimator error
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actual F-15 software

model of dynamics

Control T33 to follow 
F15 and to execute "lost 

wingman" during 
simulated 

communications loss.

Real-World Example: Lost Wingman Protocol 
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DARPA SEC: Lost Wingman Protocol
Goal
• Control T33 to follow 

F15 as “wingman”

• Execute "lost 
wingman" protocol 
during simulated 
comms loss

Technologies
• Receding horizon 

25

Comms failure
between 1 and 2
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CCL Specification for Lost Wingman

CCL-based protocol
• High speed link used to communicate 

state information between aircraft
• Low speed link used to confirm status
• Update timers based on when we last 

sent/received data
• Change modes if data is not received 

within expected period (plus delay)

26
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Flight Test Results

27
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Flight Test Results

Event timeline (right figure)
• Event 1: communications lost; T-33 executes tight turn; signals lots comms (slow link)
• Event 2: F-15 confirms communication lost message received
• Event 3: communications restored; T-33 requests rejoin (granted)
• Event 4: rejoin confirmed; return to normal operation

28

3.5 4 4.5 5 5.5
x 104

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 104

x position (meters)

y 
po

sit
io

n 
(m

et
er

s)

1

2 3

4

F15
T33

0 1 2 3 4 5 6
x 104

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 104

x position (meters)

y 
po

si
tio

n 
(m

et
er

s)

1 2

3 4

5

F15
T33



Richard M. Murray, Caltech CDSEECI, Mar 09

Implementation Tools
Existing tools
• Model checking: SPIN, TLC
• Theorem proving: PVS, Isabelle
• Symbolic modeling checking: PHAVer

Mission Data System (MDS) → Hybrid Automata
• Conversion of goal network to hybrid automata

that can be verified using PHAVer, SPIN, etc
• Joint work with JPL, applying to Titan mission

PVS metatheory for asynchronous iterative
processes
• “Library” for reasoning about stability in PVS
• Being used for verifying multi-robot protocols

Applications to Alice, RoboFlag

29

Goal

Elab Tac*c 1

Elab Tac*c 1
OR

Elab Tac*c 2

Elab Tac*c 2

Location 
Creation

Constraint 
Merging

Transition 
Creation

Location 
Removal

XML Input 
Parser

PHAVer 
Output 
Parser

Spin 
Output 
Parser
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Cooperative Control Systems Framework
Agent dynamics

Vehicle “role”
•             encodes internal state + 

relationship to current task

• Transition 

Communications graph
• Encodes the system information flow

• Neighbor set 

Communications channel
• Communicated information can be lost, 

delayed, reordered; rate constraints

• γ = binary random process (packet loss)

Task
• Encode as finite horizon optimal control

• Assume task is coupled, env’t estimated

Strategy
• Control action for individual agents

Decentralized strategy

• Similar structure for role update
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ẋi = f i(xi, ui) xi ∈ Rn, ui ∈ Rm
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yi
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J =
∫ T

0
L(x,α, E(t), u) dt + V (x(T ),α(T )),

ui(x,α) = ui(xi,αi, y−i,α−i, Ê)

y−i = {yj1 , . . . , yjmi}
jk ∈ N i mi = |N i|

{gi
j(x,α) : ri

j(x,α)}

αi ′ =

{
ri
j(x,α) g(x,α) = true

unchanged otherwise.

ui = ki(x,α)


