
Lecture 13: Protocol-Based
Control Systems

Richard M. Murray
Caltech Control and Dynamical Systems

20 March 2009
Goals:

• Describe methods for modeling and analyzing distributed protocols

• Introduce the Computation and Control Language (CCL) as an example

• Explore and analyze protocols written in CCL for cooperative control

Reading:
• E. Klavins, “A Computation and Control Language for Multi-Vehicle Systems”,

Int’l Conference on Robotics and Automation, 2004.

• E. Klavins and R. M. Murray, “Distributed Computation for Cooperative Control”,
IEEE Pervasive Computing, 2004.

Richard M. Murray, Caltech CDSEECI, Mar 09

Online
Optimization
(RHC, MILP)

Sensing

External Environment

ProcessActuation Feeder:R
eliable

State
Server

(KF -> MHE)

Inner Loop
(PID, H∞)

C
om

m
an

d:
FI

FO

1-3 Gb/s

Sensing

Traj:Causal

ActuatorState:Unreliable

Map:CausalTraj:Causal

10 Mb/s

Goal Mgmt
(MDS)

Attention &
Awareness

Memory and
Learning

Networked Control Systems
(following P. R. Kumar)

Online Model

State
Server

(KF -> MHE)

State:Unreliable

State
Server

(KF, MHE)

100 Kb/s

Online
Optimization
(RHC, MILP)

Online
Optimization
(RHC, MILP)

Mode and
Fault

Management





2

Richard M. Murray, Caltech CDSEECI, Mar 09

NCS Lecture Schedule

3

Mon Tue Wed Thu Fri

9:00
L1: Intro to
Networked

Control Systems

L5: Distributed
Control Systems

L7: Distributed
Estimation and
Sensor Fusion

L11:
Quantization and
Bandwidth Limits

L13: Distributed
Protocols and

CCL

11:00 L2: Optimization-
Based Control

L6: Cooperative
Control

L8: Information
Theory and

Communications

L12: Estimation
over Networks

L14: Open
Problems and

Future Research

12:30 Lunch Lunch Lunch Lunch Lunch

14:00 L3: Information
Patterns

L9: Jump Linear
Markov

Processes

16:00 L4: Graph
Theory

L10: Packet
Loss, Delays
and Shock
Absorbers

Richard M. Murray, Caltech CDSISAT, Feb 09

Cooperative Control Systems Framework
Agent dynamics

Vehicle “role”
• encodes internal state +

relationship to current task

• Transition

Communications graph
• Encodes the system information flow

• Neighbor set

Communications channel
• Communicated information can be lost,

delayed, reordered; rate constraints

• γ = binary random process (packet loss)

Task
• Encode as finite horizon optimal control

• Assume task is coupled, env’t estimated

Strategy
• Control action for individual agents

Decentralized strategy

• Similar structure for role update

4

N i(� �α)

α ∈ A

α′ = r(x,α)

G

M
DSMC, 2007

ẋi = f i(xi, ui) xi ∈ Rn, ui ∈ Rm

yi = hi(xi) yi ∈ Rq

yi
j [k] = γyi(tk − τj) tk+1 − tk > Tr

J =
∫ T

0
L(x,α, E(t), u) dt + V (x(T),α(T)),

ui(x,α) = ui(xi,αi, y−i,α−i, Ê)

y−i = {yj1 , . . . , yjmi}
jk ∈ N i mi = |N i|

{gi
j(x,α) : ri

j(x,α)}

αi ′ =

{
ri
j(x,α) g(x,α) = true

unchanged otherwise.

ui = ki(x,α)

Richard M. Murray, Caltech CDSEECI, Mar 09 5

Distributed Decision Making: RoboFlag Drill
Klavins

CDC, 03

Task description
• Incoming robots should be blocked by

defending robots
• Incoming robots are assigned randomly

to whoever is free
• Defending robots must move to block,

but cannot run into or cross over others
• Allow robots to communicate with left and

right neighbors and switch assignments

Goals
• Would like a provably correct, distributed

protocol for solving this problem
• Should (eventually) allow for lost data,

incomplete information

Status
• Provably correct protocol available in

perfect information case, using CCL

Richard M. Murray, Caltech CDSEECI, Mar 09 6

Distributed Situational Awareness
Communications complexity
 Maintain “situational awareness”
 Assume point-to-point commun-

ications and that each robot knows its
own position

 Q: how many messages are required
for each robot to keep track of all
other robots w/in ε?

 A: O(n2) messages (worst case)

Method #1: Distance Modulated Communication - O(n log n)
 Maintain position estimates to within k ||xi – xj||
 Communicate more often with robots that are closer

Method #2: Wandering Communication Scheme - O(n)
 Only moving robots need to keep track of position
 Robots transfer knowledge when they stop/start

Proof of
correctness
using CCL

Klavins
WAFR 02

Richard M. Murray, Caltech CDSEECI, Mar 09

Lost Wingman Protocol Verification

Temporal logic specification

• “Lost mode leads to the distance
between the aircraft always being
larger than dsep”

Protocol specification in CCL
Use guarded commands to implement finite

state automaton
Allows reasoning about controlled

performance using semi-automated theorem
proving

Relies on Lyapunov certificates to provide
information about controlled system

Lost wingman in fingertip formation

Comms failure
between 1 and 2

Richard M. Murray, Caltech CDSEECI, Mar 09

Models of Concurrency
Petri Nets and Processes
• Standard tool in Manufacturing

Hybrid Automata (Henzinger, 1996)
• Use FSM for discrete states, with dynamic inclusions in

each “mode” and transitions between states

I/O Automata [Lynch: Book 1996]
• Composition with internal / input / output actions
• Hybrid version is "sophisticated" [Lynch, Segala,

Vaandrager, Weinberg: HSIII 1996]

UNITY [Chandy & Misra: Book 1988]
• Interleaving-based parallel programming
• Based on guarded commands [Dijkstra: 1975]
• Uses temporal logic for verification

Temporal Logic of Actions [Lamport: TPLS 1994]
• TL is used for specification and "implementation"
• Sophisticated treatment of fairness constraints
• Timed and hybrid versions not too sophisticated

Richard M. Murray, Caltech CDSEECI, Mar 09

Temporal Logic
Description
• State of the system is a snapshot of values of all

variables

• Reason about behaviors σ: sequence of states of
the system

• No strict notion of time, just ordering of events

• Actions are relations between states: state s is
related to state t by action a if a takes s to t (via
prime notation: x’ = x + 1)

• Formulas (specifications) describe the set of
allowable behaviors

• Safety specification: what actions are allowed

• Fairness specification: when can a component
take an action (eg, infinitely often)

Example
• Action: a ≡ x’ = x + 1

• Behavior: σ ≡ x := 1, x := 2, x:= 3, ...

• Safety: x > 0 (true for this behavior)

• Fairness: (x’ = x + 1 ∨ x’ = x) ∧ ◊ (x’ ≠ x)

Properties
• Can reason about time by adding

“time variables” (t’ = t + 1)

• Specifications and proofs can be
difficult to interpret by hand, but
computer tools existing (eg, TLC,
Isabelle, PVS, etc)

9

 p ≡ always p (invariance)
 ◊p ≡ eventually p (guarantee)
 p → ◊q ≡ p implies eventually q

(response)
 p → q U r ≡ p implies q until r

(precedence)
 ◊p ≡ always eventually p

(progress)
 ◊p ≡ eventually always p

(stability)
 ◊p → ◊q ≡ eventually p implies

eventually q (correlation)

Richard M. Murray, Caltech CDSEECI, Mar 09

UNITY (Chandy and Misra)
Description
• Specification consists of a set of (possibly

gaurded) variable assignments
• Behaviors are generated by starting an an initial

state, then choosing any assignment for which the
guard is true

• Command (g:r) may be evaluated in any order, at
any time

• Require that all assignments be applied infinitely
often in any execution (built in fairness)

• Reason about “programs” using temporal logic

Properties
• Useful for reasoning about systems in which there

is very asynchronous behavior
• Fairness constraint is a bit too loose for control

applications; only assume that each command
executes eventually (instead of once every
iteration)

10

g3:r3
g4:r4

g7:r7

g6:r6

g1:r1

g5:r5

g2:r2

g8:r8

Richard M. Murray, Caltech CDSEECI, Mar 09 11

P(k1,k2) := {
 initializers
 guard1:rule1
 guard2:rule2
 ...

}

S(k1,k2):=P(k1,k2)+C(k1+1) sharing y,u

"soup" of
guarded commands

composition = union

non-shared variables
remain local to

component programs

CCL: Computation and Control Language
Formal Language for Provably Correct Control Protocols

CCL Interpreter

Formal programming lang-
uage for control and comp-
utation. Interfaces with
libraries in other languages.

Automated Verification
CCL encoded in the Isabelle
theorem prover; basic specs
verified semi-automatically.
Investigating various model
checking tools.

Formal Results
Formal semantics in transition
systems and temporal logic.
RoboFlag drill formalized and
basic algorithms verified.

CCL Protocol for
Decentralized

Target Allocation

Richard M. Murray, Caltech CDSEECI, Mar 09

Scheduling and Composition

12

Program composition:
(I1,C1) + (I2,C2) = (I1∧I2, C1∪C2)

EPOCH
Each command is
executed before any
are again.

SYNCH(τ)
In any interval, the difference in
the number of times any two
commands are executed is ≤ τ.

UNITY
Each command must be
executed infinitely often.

Richard M. Murray, Caltech CDSEECI, Mar 09

include standard.ccl

program plant (a, b, x0, delta) := {
 x := x0;
 y := x;
 u := 0.0;
 true : {
 x := x + delta * (a * x + b * u),
 y := x,
 print (" x = ", x, "\n")
 };
};

program control() := {
 y := 0.0;
 u := 0.0;
 true : { u := -y };
};

program sys (a, b, x0) := plant (a, b, x0, 0.1) +
 control (2*a/b) sharing u, y;

exec sys (3.1, 0.75, 15.23);

An Example CCL Program

 x = 3.216250
 x = 3.095641
 x = 2.979554
 x = 2.867821
 x = 2.760278
 x = 2.656767
 x = 2.557138
 x = 2.461246
 x = 2.368949
 x = 2.280113
 x = 2.194609
 x = 2.112311
 x = 2.033100
 x = 1.956858
 x = 1.883476
 x = 1.812846
 x = 1.744864
 x = 1.679432
 x = 1.616453

 ...

Richard M. Murray, Caltech CDSEECI, Mar 09

program prog3 (...) :=
 prog1 (...) +
 prog2 (...) sharing x, y, z, ...;

exec prog (1.1, 2.0);

This makes a new program with conjoined
initial section and includes all clauses from

prog1 and prog2. x, y and z are shared,
other vars are local.

Starts the interpreter.

Structure of CCL Programs
program prog1 = {

 declarations

 initial {
 assignments
 }

 guard : { rules }
 guard : { rules }
 ...

};

Declares a new program with name "prog1"

Declare variables and functions to be used.

Initialize state (variables and environment)

Any number of "clauses". Guards are boolean
expressions and rules are assignments to

variables or control commands.

n {
 agent 0 gets prog0;
 agent 1 gets prog1;
 ...
}

For the simulator: assign programs to agents

Richard M. Murray, Caltech CDSEECI, Mar 09

CCL Language Features (optional)
Variables
• Can be of type constant, number or array

External functions
• Can be of type function, arrayfunction, boolean, with numerical arguments
• Can link to C/C++ functions
• whoami, time, posx, posy, print, rand, reset, send_mesg,
clear_box, sin, cos, abs, pos, vel, get_mesg, check_box,...

Expressions
• Numeric (1 + sin(x+y)/time()) or boolean (y[2] < y[3] || false)

Communications

• Mailboxes: send_mesg(to, arg1, ..., argn), recv_mesg (from),
check_box (from)

Predefined Controllers
• Specified with the controller keyword
• velcontrol, pd, force, pd_vehicle,...

15

Richard M. Murray, Caltech CDSEECI, Mar 09

Defensive Zone
0

a b

c

Example: RoboFlag Drill

Richard M. Murray, Caltech CDSEECI, Mar 09

Defensive Zone
0

a b

c

i j

α(j) is too far down
for i to get

RoboFlag Control Protocol

Richard M. Murray, Caltech CDSEECI, Mar 09

fun r i j .
 if red[alpha[j]][1] < abs (blue[i] -
red[alpha[j]][0])
 then 1
 else 0
 end;

fun switch i j .
 r i j + r j i < r i i + r j j
 | (r i j + r j i = r i i + r j j
 & red[alpha[i]][0] > red[alpha[j][0]);

program ProtoPair (i, j) := {

 temp := 0;

 switch i j : {
 temp := alpha[i],
 alpha[i] := alpha[j],
 alpha[j] := temp,
 }

};

program Blue (i) := {

 red[alpha[i]][0] > blue[i] & blue[i] +
delta < toplimit i : {
 blue[i] := blue[i] + delta
 }

 red[alpha[i]][0] < blue[i] & blue[i] -
delta > botlimit i : {
 blue[i] := blue[i] - delta
 }

};

CCL Program for Switching Assignments

program Red (i) := {

 red[i][1] > delta : {
 red[i][1] := red[i][1] - delta
 }

 red[i][1] < delta : {
 red[i] := { rrand 0 n, rrand lowerlimit
n }
 }

};

Richard M. Murray, Caltech CDSEECI, Mar 09

CCL/Temporal Logic Notation
Temporal logic
• p always p (invariance)

• ◊p eventually p (guarantee)

• p → ◊q p implies eventually q (response)

• p → q U r p implies q until r (precedence)

• ◊p always eventually p (progress)

• ◊p eventually always p (stability)

• ◊p → ◊q eventually p implies eventually q (correlation)

• ¬p negation (not p)

• σ⟦F⟧ true if a behavior σ satisfies a formula F

• P ⊨ F ∀σ . σ⟦P⟧ ⇒ σ⟦F⟧ P satisfies F (any behavior consistent with a program
 ßsatisfies a specified formula)

CCL
• skip true : ∀v . v’ = v guarded command that does nothing
• p ↝ q (p ⇒ ◊q) “p leads to q”: if p is true, q will eventually be true

• p co q (p ⇒ [(q’ ∨ skip]) ∧ ◊q’]) if p is true, then next time state changes, q will be true

19

Richard M. Murray, Caltech CDSEECI, Mar 09

Safety (Defenders do not collide)

Stability (switch predicate stays false)

“Lyapunov” stability
• Let ρ be the number of blue robots that are too far away to reach their red robots

• Let β be the total number of conflicts in the current assignment

• Define the Lyapunov function that captures “energy” of current state (V = 0 is desired)

• Can show that V always decreases whenever a switch occurs

Properties for RoboFlag program

Robots are "far enough" apart.

20

V =
[(

n

2

)
+ 1

]
ρ + β β =

n∑

i=1

n∑

j=i+1

γ(i, j) where γ(i, j) =

{
1 if xα(i) > xα(j)

0 otherwise
ρ =

n∑

i=1

r(i, i)

Richard M. Murray, Caltech CDSEECI, Mar 09

Sketch of Proof for RoboFlag Drill
More notation:
• Meaning of an action: s [[a]] t ≡ a(∀v : s[[v]] / v, t[[v]] / v’)

- Updates the state of the system by replacing all unprimed variables in a by their values under the
state s and replacing all primed variables in a by their values under t

• Hoare triple notation: {P} a {Q} ≡ ∀ s, t . s[[P]] ^ s [[a]] t => t[[Q]]
- True if the predicate P being true implies that Q is true after action a

Lemma (Klavins, 5.2) Let P = (I, C) be a program and p and q be predictates. If for all
commands c in C we have {p} c {q} then P ⊨ p co q.

- If p is true then any action in the program P that can be applied in the current state leaves q true

Thm Prf(n) ⊨  zi < zi+1

- For the RoboFlag drill with n defenders and n attackers, the location of defender will always be to
the left of defender i+1.

Proof. Using the lemma, it suffices to check that for all commands c in C we have {p} c
{q}. So, we need to show that if zi < zi+1 then any command that changes zi or zi+1 leaves
these unchanged. Two cases: i moves or i+1 moves. For the first case, {p} c {q}
becomes

From the definition of the gaurded command, this is true. Similar for second case.

21

zi < zi+1 ∧ (zi < xα(i) ∧ zi < zi+1 − δ : z′
i = zi + δ) =⇒ z′

i < z′
i+1

Richard M. Murray, Caltech CDSEECI, Mar 09

RoboFlag Simulation

Richard M. Murray, Caltech CDSEECI, Mar 09

Observation of CCL Programs
Goal: determine assignments by watching motion
• Assume CCL program describing protocol is known
• Brute force: enumerate all N! possibilities and eliminate

cases that are inconsistent with motion (over time)

Alternative approach: exploit structure
• Keep track of upper and lower bounds for each zi

• Can show this provides a partial order on sets of
possible assignments

• Extended CCL update law preserves the order:

General case: observers for hybrid systems
• Construct a partial order on discrete states
• Extend CCL program to provide order-isomorphic

map (always possible with power set)
• Can construct observer if system is observable:

predict + correct on upper/lower bounds (fast)

23

Del Vecchio, Klavins and M
Automatica, 2006

⇒ fast computation

N = 30
alignment error

estimator error

Richard M. Murray, Caltech CDSEECI, Mar 09

actual F-15 software

model of dynamics

Control T33 to follow
F15 and to execute "lost

wingman" during
simulated

communications loss.

Real-World Example: Lost Wingman Protocol

Richard M. Murray, Caltech CDSEECI, Mar 09

DARPA SEC: Lost Wingman Protocol
Goal
• Control T33 to follow

F15 as “wingman”

• Execute "lost
wingman" protocol
during simulated
comms loss

Technologies
• Receding horizon

25

Comms failure
between 1 and 2

Richard M. Murray, Caltech CDSEECI, Mar 09

CCL Specification for Lost Wingman

CCL-based protocol
• High speed link used to communicate

state information between aircraft
• Low speed link used to confirm status
• Update timers based on when we last

sent/received data
• Change modes if data is not received

within expected period (plus delay)

26

Richard M. Murray, Caltech CDSEECI, Mar 09

Flight Test Results

27

Richard M. Murray, Caltech CDSEECI, Mar 09

Flight Test Results

Event timeline (right figure)
• Event 1: communications lost; T-33 executes tight turn; signals lots comms (slow link)
• Event 2: F-15 confirms communication lost message received
• Event 3: communications restored; T-33 requests rejoin (granted)
• Event 4: rejoin confirmed; return to normal operation

28

3.5 4 4.5 5 5.5
x 104

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 104

x position (meters)

y
po

sit
io

n
(m

et
er

s)

1

2 3

4

F15
T33

0 1 2 3 4 5 6
x 104

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 104

x position (meters)

y
po

si
tio

n
(m

et
er

s)

1 2

3 4

5

F15
T33

Richard M. Murray, Caltech CDSEECI, Mar 09

Implementation Tools
Existing tools
• Model checking: SPIN, TLC
• Theorem proving: PVS, Isabelle
• Symbolic modeling checking: PHAVer

Mission Data System (MDS) → Hybrid Automata
• Conversion of goal network to hybrid automata

that can be verified using PHAVer, SPIN, etc
• Joint work with JPL, applying to Titan mission

PVS metatheory for asynchronous iterative
processes
• “Library” for reasoning about stability in PVS
• Being used for verifying multi-robot protocols

Applications to Alice, RoboFlag

29

Goal

Elab Tac*c 1

Elab Tac*c 1
OR

Elab Tac*c 2

Elab Tac*c 2

Location
Creation

Constraint
Merging

Transition
Creation

Location
Removal

XML Input
Parser

PHAVer
Output
Parser

Spin
Output
Parser

Richard M. Murray, Caltech CDSISAT, Feb 09

Cooperative Control Systems Framework
Agent dynamics

Vehicle “role”
• encodes internal state +

relationship to current task

• Transition

Communications graph
• Encodes the system information flow

• Neighbor set

Communications channel
• Communicated information can be lost,

delayed, reordered; rate constraints

• γ = binary random process (packet loss)

Task
• Encode as finite horizon optimal control

• Assume task is coupled, env’t estimated

Strategy
• Control action for individual agents

Decentralized strategy

• Similar structure for role update

30

N i(� �α)

α ∈ A

α′ = r(x,α)

G

M
DSMC, 2007

ẋi = f i(xi, ui) xi ∈ Rn, ui ∈ Rm

yi = hi(xi) yi ∈ Rq

yi
j [k] = γyi(tk − τj) tk+1 − tk > Tr

J =
∫ T

0
L(x,α, E(t), u) dt + V (x(T),α(T)),

ui(x,α) = ui(xi,αi, y−i,α−i, Ê)

y−i = {yj1 , . . . , yjmi}
jk ∈ N i mi = |N i|

{gi
j(x,α) : ri

j(x,α)}

αi ′ =

{
ri
j(x,α) g(x,α) = true

unchanged otherwise.

ui = ki(x,α)

