—j CDS 270-2: Lecture 1-3
Message Transfer Architectures

(o)
(7

id-RN/A'

1891

Richard M. Murray
31 March 2006

Goals:
» Discuss choices in NCS message delivery

» Describe Spread, a group communications toolkit
 Discuss event ordering in distributed systems

Reading:
* “Time, Clocks, and the Ordering of Evvents in a Distributed System”, L.

Lamport. Comm. ACM, 1978
* “A User’s Guide to Spread”, Jonathan R. Stanton, 2002.

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS

Communication Management: Spread

Supervi
Cost Map Path —

Control

> Road Finding llower ehicle
A N ﬁation
N
@006 @ 1.\|@]
Environment —>|— Elevatmp‘< mator (€ Vehicle
Sensors T —Lt— T 7Y
T | |
Environment <
Message type Bytes/Freq Recv | Comments
Vehicle State ~250 B @ 40 Hz 15 | Pos, vel, acc; highest update rate
Actuator State ~220 B @ 30 Hz 3? | Actuators + OBD II information
Elevation Map 4 MB @ 10 Hz 0 Not transmitted
Cost Map 4 MB @ 10 Hz 3 Deltas transmitted
Trajectory ???7 @ 5 Hz 2 Variable size (I think)
Cameras 640x480 @ 30 Hz 5 Firewire (~20 MB/s per camera)

CDS 270-2, 31 Mar 06

R. M. Murray, Caltech CDS

Causality in Distributed Communications (Lamport, ‘78)

Logical Clocks
» Let C(a) be a clock for process P;that
assigns a number to an event
» Define C(b) = C(b) if b is an event in
process P

» Clock condition: for any two events a,
b: if a — b then C(a) < C(b)

process P
process Q
process R

Remarks
» Events are partially ordered: can
Partial ordering: a— Db compare some events but not all
« If a and b are events in the same events
process, thena — b « Example: p; — g5 but p; and g5 are no
« If a is the sending of a message by one related
process and b is the receipt of the » Clocks are not unique (can choose any
same message by another process, set of integers with appropriate
thena — b relations)

e lfa—bandb—-cthena—c
* a — b means “a can causally effect b”

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 3

Implementing a Clock

Conditions for a clock

» C1:If a, b are events in process P, and
a comes before b, then C,(a) < Ci(b)

» C2: If event a is the sending of a
message by process P, and event b is

the receipt of that message by process
P;, then C(a) < C(b)

Space-Time Diagram

» Add ticks for every count in each
process

» Draw “tick lines” between equally
numbered ticks

» C1 = tick line between two events
» C2 = every msg must cross tick line

CDS 270-2, 31 Mar 06

R. M. Murray, Caltech CDS

process P
process Q
process R

Remarks

» Events can shift around between tick
lines without changing logical clocks =
logical time is different than physical
time

Constructing Clocks

Implementation rule

» IR1: Each process P; increments C,
between any two successive events

e |R2:

o (a) If event a is the sending a
message m by process P;, then the
message m contains a timestamp
Tm = Ci<a>

o (b) Upon receiving a message m,
process P; sets C; greater than or
equal to its present value and
greater than T,

Remarks:
» Gives an easy algorithm for
constructing a clock

 Note that C(a) < C(b) does not imply
a — b. Still only a partial order (can
only compare certain elements)

CDS 270-2, 31 Mar 06

\

process P
—
process R

| process Q

e - —— - - -

4

©
-

T T R SRS Ny (R —

2

Total order

» Order events according to logical
clocks

» Break ties using process number
 Allows any two events to be compared

» Total ordering is not unique (depends
on choice of clocks)

R. M. Murray, Caltech CDS

CDS 270-2, 31 Mar 06

Example: Resource allocation

nEEEE

Problem description

Fixed processes P; sharing resource R

Once a process grabs a resource, it
must release it before it is use again

Requests granted in order they were
requested

Every request is eventually granted

Solve in distributed way; processes
agree on who goes next

Problem is non-trivial, even with central
scheduling (see Lamport paper)

Algorithm
1. P,sends message T, :P, request to

every other process and puts message
on its queue

P; queues all requests and sends
timestamped acknowledgement to
sender

. Process P, uses resource when

» T,,:P, request is ordered before any
other request in queue (according to
total order)

P, has been received ack from
everyone with timestamp > T,

P, removes T :P, request message
from queue and sends T, :P, release
message to everyone

When P, receives a TP, release
message, it removes message from its
queue

R. M. Murray, Caltech CDS 6

Group Messaging Systems

Group Issues

» Collections of processes that can send » Need to track membership over time
messages back and forth to everyone . Need to provide different levels of

» Messaging system has to keep track of reliability (at the group level)

people joining and leaving groups _ _
 Goal: deliver packets reliably and » Need to provide different levels of
ordering (or causality)

causally
» Also need to keep track of the fact that
time may be different on different

Ex: Alice NCS group message types
computers (no global clock)

» Modules receive certain message types

Feeder 1

Feeder 2

FusionMapper

Safety Mon. EV \ W
State Estimate | \' / \' /

T
|
|
|
|
|
|
t
|

Planner

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 7

Message Ordering (“Virtual Synchrony”)

Ordering
* None - No ordering guarantee.

» Fifo by Sender- All messages sent by
this sender are delivered in FIFO order.

» Causal - All messages sent by all
senders are delivered in Lamport
causal order.

» Total Order - All messages sent by all
senders are delivered in the exact

same order to all recipients

Feeder 1

Remarks

» Imposing causality increases message
overhead; need to make sure that
everyone has the message

» Things get interesting with multiple
groups - everyone in same collection of
groups should receive all messages in
same order

« HW: figure out an example where
causal and total order are different

FusionMapper

Feeder 2 /7\‘@

<
%
%Q
/.
%

1N

-
[O —

Safety Mon. EV \
State Estimate !

Planner
CDS 270-2, 31 Mar 06

R. M. Murray, Caltech CDS

Message Reliability (“Extended Virtual Synchrony”)

Reliability
» Unreliable - Message may be dropped
or lost and will not be recovered.

* Reliable - Message will be reliably
delivered to all recipients who are in
group to which message was sent.

» Safe - The message will ONLY be
delivered to a recipient if everyone
currently in the group definitely has the
message

Feeder 1

Remarks

» Key issue is keeping track of reliability
in groups. Reliable messages should
be received by everyone (eventually).

» Requires agreement algorithm across
computers (who has what)

« HW: find an example where reliable
messages are not safe.

Feeder 2

FusionMapper

Safety Mon.

|
—

State Estimate

{
)
\
\
\
\ L 1
\ !]
\ ! /
\ 1
\ /
\ /
\ ! !
\ / /
T T 7
t t +	

Planner
CDS 270-2, 31 Mar 06

R. M. Murray, Caltech CDS

Spread Toolkit (Stanton ‘02)

Computer 1 Computer 2 Computer 3

\
72|

P1 P1
ey
T Group s T
Spread Functions Message types
e SP_connect: establish a connection « Unreliable - no order, unreliable

with the spread daemon
e SP_disconnect: terminate connection
« SP_join(mbox. group): join a group
 SP_leave(mbox. group): leave a group

« SP_multicast(..., group, message):
send a message to everyone in group

 SP_multigroup_multicast(..., groups,
message): send message to multiple
groups all at once

Reliable - no order, reliable

FIFO - FIFO by sender, reliable
Causal - Causal (Lamport), reliable
Agreed - Totally ordered, reliable
Safe - Totally ordered, safe

Note: each message has a type; these
can be mixed within groups

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 10

Computer 1

Spread
Server

Features of Spread

Computer 2

Spread Computer 3

Server

g

P

"/

Features of Spread

 Number and location of servers are
configurable

» Retransmits are optimized in multi-hop
environments

« Guarantees are provided at servers;
assumes that inter-process comms on

single computer is reliable

V']

P

\

» Data is combined in packets when
possible to increase efficiency

o Gives a correlated channel model

when data is lost

* No hardwired addresses (exc servers)

CDS 270-2, 31 Mar 06

R. M. Murray,

| [B
Project ideas

* How can we model a spread-based
communications network from the point
of view of estimation and control

* |s it better to have one server or
multiple servers? What are the latency
tradeoffs?

o Alice originally used one server per
computer

o Eventually moved to a single server
(not sure why)

Caltech CDS 11

How Spread Works (Amir and Stanton, ‘98)

Spread Daemon

Application

Spread daemon

Sroups Session &> sP-Lib » Implements group communi-
& cations protocols
Application .« Uses UDP to talk between
—— SP-Lib spread hosts
Yy vy
Membership [Transport « Two protocols: hop and ring
' g - Application
Routing Network SP-Lib)]
Applications
¥ v » Think client library

Hop /... Hop | Ring

Datalink(UDP/IP with {Uni Broad Mult}cast)

Hop protocol
« UDP-based protocol between sites
o Sites connected by slower links
* Provide low latency communcations

» Packet loss handled on hop-by-hop
basis (instead of end to end)

CDS 270-2, 31 Mar 06 R. M. Murray,

Caltech CDS

» Uses TCP to talk to server

Ring Protocol

e Used for communications between
multiple servers at same site

o Assumes dedicated (switched) links

» Token ring based protocol: pass control
from one server to the next

12

Example: Resource allocation

nEEEE

Problem description
 Fixed processes P, sharing resource R

» Once a process grabs a resource, it
must release it before it is use again

* Requests granted in order they were
requested

» Every request is eventually granted

» Solve in distributed way; processes
agree on who goes next

* Problem is non-trivial, even with central
scheduling (see Lamport paper)

CDS 270-2, 31 Mar 06

Solution using Spread

« Assume totally ordered, reliable
messages (“agreed” message type)

» All processes and resource in single
spread group

Algorithm

1. P, sends multcast message to group
requesting resource

2. Pj;queues all requests and sends ack
3. Process P; uses resource when
» P, request is at top of queue

 Ack has been received from
everyone

» P, sends release message when done

P, dequeues release when message
received

* Note: spread provides single order

R. M. Murray, Caltech CDS 13

Summary: Message Transfer Architectures

. Superviggorg Control .
> Road Finding Cost Map Path —>> llower ehicle
A N uation
—20@6 A 2
) = /\ Y
Environment —>|_ Elevatﬂn/l\lla’p‘(mator [€tH{ Vehicle
Sensors T —Lt— T X
T |
Environment <

process P
process Q

41

e

CDS 270-2, 31 Mar 06

~ Feeder 1

process R

Feeder 2
FusionMapper

Safety Mon.

R. M. Murray, Caltech CDS

14

