
CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 1

CDS 270-2: Lecture 1-3

Message Transfer Architectures

Richard M. Murray

31 March 2006

Goals:

• Discuss choices in NCS message delivery

• Describe Spread, a group communications toolkit

• Discuss event ordering in distributed systems

Reading:

• “Time, Clocks, and the Ordering of Evvents in a Distributed System”, L.
Lamport. Comm. ACM, 1978

• “A User s Guide to Spread”, Jonathan R. Stanton, 2002.

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 2

Communication Management: Spread

1

22 3 4 5

6 7 7 1

Firewire (~20 MB/s per camera)5640x480 @ 30 HzCameras

Variable size (I think)2 ??? @ 5 HzTrajectory

Deltas transmitted34 MB @ 10 HzCost Map

Not transmitted04 MB @ 10 HzElevation Map

Actuators + OBD II information3?~220 B @ 30 HzActuator State

Pos, vel, acc; highest update rate15~250 B @ 40 HzVehicle State

CommentsRecvBytes/FreqMessage type

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 3

Causality in Distributed Communications (Lamport, ‘78)

Partial ordering: a b

• If a and b are events in the same
process, then a b

• If a is the sending of a message by one

process and b is the receipt of the

same message by another process,
then a b

• If a b and b c then a c

• a b means “a can causally effect b”

Logical Clocks

• Let Ci a be a clock for process Pi that

assigns a number to an event

• Define C b = Cj b if b is an event in

process Pj

• Clock condition: for any two events a,
b: if a b then C a < C b

Remarks

• Events are partially ordered: can

compare some events but not all

events

• Example: p1 q3 but p3 and q3 are no

related

• Clocks are not unique (can choose any

set of integers with appropriate

relations)

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 4

Implementing a Clock

Conditions for a clock

• C1: If a, b are events in process Pi and
a comes before b, then Ci a < Ci b

• C2: If event a is the sending of a

message by process PI and event b is

the receipt of that message by process
Pj, then CI a < CI b

Space-Time Diagram

• Add ticks for every count in each

process

• Draw “tick lines” between equally

numbered ticks

• C1 tick line between two events

• C2 every msg must cross tick line

Remarks

• Events can shift around between tick
lines without changing logical clocks

logical time is different than physical

time

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 5

Constructing Clocks

Implementation rule

• IR1: Each process Pi increments Ci

between any two successive events

• IR2:

(a) If event a is the sending a

message m by process Pi, then the

message m contains a timestamp
Tm = Ci a

(b) Upon receiving a message m,

process Pj sets Cj greater than or

equal to its present value and

greater than Tm

Remarks:

• Gives an easy algorithm for

constructing a clock

• Note that C a < C b does not imply

a b. Still only a partial order (can

only compare certain elements)

Total order

• Order events according to logical

clocks

• Break ties using process number

• Allows any two events to be compared

• Total ordering is not unique (depends

on choice of clocks)

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 6

Example: Resource allocation

Problem description

• Fixed processes Pi sharing resource R

• Once a process grabs a resource, it

must release it before it is use again

• Requests granted in order they were

requested

• Every request is eventually granted

• Solve in distributed way; processes

agree on who goes next

• Problem is non-trivial, even with central

scheduling (see Lamport paper)

Algorithm

1. PI sends message Tm:Pi request to

every other process and puts message

on its queue

2. Pj queues all requests and sends

timestamped acknowledgement to

sender

3. Process Pi uses resource when

• Tm:Pi request is ordered before any

other request in queue (according to

total order)

• Pi has been received ack from

everyone with timestamp > Tm

• Pi removes Tm:Pi request message

from queue and sends Tm:Pi release

message to everyone

• When Pj receives a Tm:Pi release

message, it removes message from its

queue

P1 P2 P3 P4 P5

R

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 7

Group Messaging Systems

Group

• Collections of processes that can send
messages back and forth to everyone

• Messaging system has to keep track of
people joining and leaving groups

• Goal: deliver packets reliably and
causally

Ex: Alice NCS group message types

• Modules receive certain message types

Issues

• Need to track membership over time

• Need to provide different levels of

reliability (at the group level)

• Need to provide different levels of

ordering (or causality)

• Also need to keep track of the fact that

time may be different on different

computers (no global clock)

Feeder 1

Feeder 2

FusionMapper

Safety Mon.

State Estimate

Planner

x

x

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 8

Message Ordering (“Virtual Synchrony”)

Ordering

• None - No ordering guarantee.

• Fifo by Sender- All messages sent by

this sender are delivered in FIFO order.

• Causal - All messages sent by all

senders are delivered in Lamport

causal order.

• Total Order - All messages sent by all

senders are delivered in the exact

same order to all recipients

Remarks

• Imposing causality increases message

overhead; need to make sure that

everyone has the message

• Things get interesting with multiple

groups - everyone in same collection of

groups should receive all messages in

same order

• HW: figure out an example where

causal and total order are different

Feeder 1

Feeder 2

FusionMapper

Safety Mon.

State Estimate

Planner

x

x

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 9

Message Reliability (“Extended Virtual Synchrony”)

Reliability

• Unreliable - Message may be dropped

or lost and will not be recovered.

• Reliable - Message will be reliably

delivered to all recipients who are in

group to which message was sent.

• Safe - The message will ONLY be

delivered to a recipient if everyone

currently in the group definitely has the

message

Remarks

• Key issue is keeping track of reliability

in groups. Reliable messages should

be received by everyone (eventually).

• Requires agreement algorithm across

computers (who has what)

• HW: find an example where reliable

messages are not safe.

Feeder 1

Feeder 2

FusionMapper

Safety Mon.

State Estimate

Planner

x

x

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 10

Spread Toolkit (Stanton ‘02)

Spread Functions

• SP_connect: establish a connection

with the spread daemon

• SP_disconnect: terminate connection

• SP_join(mbox. group): join a group

• SP_leave(mbox. group): leave a group

• SP_multicast(…, group, message):

send a message to everyone in group

• SP_multigroup_multicast(…, groups,

message): send message to multiple

groups all at once

Message types

• Unreliable - no order, unreliable

• Reliable - no order, reliable

• FIFO - FIFO by sender, reliable

• Causal - Causal (Lamport), reliable

• Agreed - Totally ordered, reliable

• Safe - Totally ordered, safe

• Note: each message has a type; these

can be mixed within groups

Computer 1 Spread

Server

P1 P2 P3

Computer 2 Spread

Server

P1 P2 P3

Computer 3

P1 P2 P3

Group 1

Group 2

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 11

Features of Spread

Features of Spread

• Number and location of servers are

configurable

• Retransmits are optimized in multi-hop

environments

• Guarantees are provided at servers;

assumes that inter-process comms on

single computer is reliable

• Data is combined in packets when

possible to increase efficiency

Gives a correlated channel model

when data is lost

• No hardwired addresses (exc servers)

Project ideas

• How can we model a spread-based

communications network from the point

of view of estimation and control

• Is it better to have one server or

multiple servers? What are the latency

tradeoffs?

Alice originally used one server per

computer

Eventually moved to a single server

(not sure why)

Computer 1 Spread

Server

P1 P2 P3

Computer 2 Spread

Server

P1 P2 P3

Computer 3

P1 P2 P3

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 12

How Spread Works (Amir and Stanton, ‘98)

Hop protocol

• UDP-based protocol between sites

Sites connected by slower links

• Provide low latency communcations

• Packet loss handled on hop-by-hop

basis (instead of end to end)

Spread daemon

• Implements group communi-

cations protocols

• Uses UDP to talk between

spread hosts

• Two protocols: hop and ring

Applications

• Think client library

• Uses TCP to talk to server

Ring Protocol

• Used for communications between

multiple servers at same site

Assumes dedicated (switched) links

• Token ring based protocol: pass control

from one server to the next

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 13

Example: Resource allocation

Problem description

• Fixed processes Pi sharing resource R

• Once a process grabs a resource, it

must release it before it is use again

• Requests granted in order they were

requested

• Every request is eventually granted

• Solve in distributed way; processes

agree on who goes next

• Problem is non-trivial, even with central

scheduling (see Lamport paper)

Solution using Spread

• Assume totally ordered, reliable

messages (“agreed” message type)

• All processes and resource in single

spread group

Algorithm

1. Pi sends multcast message to group

requesting resource

2. Pj queues all requests and sends ack

3. Process Pi uses resource when

• Pi request is at top of queue

• Ack has been received from

everyone

• Pi sends release message when done

• Pj dequeues release when message

received

• Note: spread provides single order

P1 P2 P3 P4 P5

R

CDS 270-2, 31 Mar 06 R. M. Murray, Caltech CDS 14

Summary: Message Transfer Architectures

1

22 3 4 5

6 7 7 1

