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1 The Stable Manifold Theorem
i = f(x) (1)
&= Df(xo)x (2)

We assume that the equilibrium point z is located at the origin.

1.1 Some Examples

1.1.1 Example 1

Consider The linear system
T, = —x1
To = 219

Clearly we have z1(t) = aje™! and z2(t) = age?, with stable subspace E* = span{(1,0)} and unstable
subspace E" = span{(0,1)}. So lim; , ¢:(a) = 0 only if a € R®. Consider a small perturbation of this
linear system:

il = —I

To = 2.%‘2—5631‘:13

The solution is given by z1(t) = are™" and z5(t) = aze® + afe (e”

B 2t) = 3,3t
Clearly lim;_,, ¢¢(a) = 0 only if ay = ea$. Indeed we can show that the set

= (az —ea?) €*" + eafe

S = {r € R?|zy = ex?}

is invariant with respect to the flow. It easy to see that as = ea$ leads to

—t —t
ae ae
S) — — €S
() (az — ea:{’) e?t + eaje 3t ] [ eaje 3t }

So S is an invariant set (curve), and the flow on this curve is stable. So it seems that S is some nonlinear
analog of E°. Furthermore, notice that S is tangent to the stable subspace of the linear system, and as
€ — 0, the curve S becomes E*.

1.1.2 Example 2 (Perko 2.7 Example 1)_

Consider
rn = —I
Ty = —I9+ x%
T3 = I3+ x?
which we can rewrite as
-1 0 0 0
T = 0 -1 0 |a+ | 22
0 0 1 x%



The flow is given by

are?

$:(S) = | aze™" + a? (e7t +e?)
2
aset + a31 (et _ 672:5)
where a = (a1, az,a3) = 2(0). Clearly lim; ., ¢:(a) = 0 only if a3 = —a?/3. So

S ={acR3az = —al/3}

and similarly
U={acR¥a; =ay=0}.

Again it seems that S is some nonlinear analog of E*and U is some nonlinear analog of E* . Furthermore,
notice that S is tangent to the stable subspace of the linear system. We call S the stable manifold, and U
the unstable manifold.

We are going to see how we can compute S and U in general.

1.2 Manifolds and stable manifold theorem

But first here is a “working” definition of a k-dimentional differential manifold. For more precise definition,
there is a small section in the book, and CDS202 deals with differentiable manifolds in great details.

In this class, by k-dimentional differential manifold (or manifold of class C™) we mean any “smooth”
(of order C™) k-dimensional surface in an n-dimensional space.

For example S = {a € R®|a3 = —a?/3} is 2-dimensional differentiable manifold.

Theorem (The Stable Manifold Theorem): Let E be an open subset of R™ containing the origin,
let f € C1(E), and let ¢; be the flow of the non-linear system (1). Suppose that f(0) = 0 and that D f(0)
has k eigenvalues with negative real part and n — k eigenvalues with positive real part. Then there exists a
k—dimensional manifold S tangent to the stable subspace E®of the linear system (2)at 0 such that for all
t >0, ¢:(S) C S and for all zg € S,

Jim (o) = 0;

and there exists an n — k differentiable manifold U tanget to the unstable subspace E* of (2) at 0 such that
for all t <0, ¢4(U) C U and for all ¢ € U,

t—l>u;noo (bt(x()) =0

Note: As in the examples, since f € C'(E) and f(0) = 0, then system (1) can be writen as
&= Az + F(x)

where A = Df(0), F(z) = f(z) — Az, F € CY(E), F(0) =0 and DF(0) = 0.
Furthermore, we want to separate the stable and unstable parts of the matrix , i.e., choose a matrix C'

such that
P 0
—_ -1 —_
pecrac=[ 2]
where the eigenvalues of the k x k matrix P have negative real part, and the eigenvalues of the (n—k) x (n—k)
matrix @ have positive real part. The transformed system (y = C~'x) has the form

y = By+C'F(Cy)
y = By+Gy) (3)



1.2.1 Calculating the stable manifold (Perko Method):

Perko shows that the solutions of the integral equation

t oo
u(t,a) = U(t)aJr/ Ut — s)G(u(s,a))ds f/ V(t — s)G(u(s,a))ds
0 t
satisfy (3) and lim;_, u(t,a) = 0. Furthermore it gives an iterative scheme for computing the solution:
u(t,a) =

0
utV(ta) = U(t)a+/tU(t—s)G(u(’“)(s,a))ds—/oo V(t —s)Gu™(s,a))ds
0 t

e Remark Here is some intuition on why the particular integral equation is chosen. We basically want
to remove the parts that blow up as t — co. In general, the solution of this system satisfies

Pt 0 t eP(t—s) 0
u(t,a) = [ 0 @t ]a+/() [ 0 Qt—5) }G(u(s,a))ds.

'ePt 0 t eP(tfs) 0
wra) = [ o e [0 ol | ctutsanas

Separate the convergent and non-convergent parts

[ePt 0 0 0 FT ePt=9 ¢ ) 0

= 0 0 ]a—i— { 0 @t ]CH—/O [ 0 0 }G(u(s,a))ds—k/o [ 0 Q@(t—s) }G(U(&G))dé’
r ePt 0 0 0 t P(t—s) 0

= 0 O]a—k{o th]a—F/O [e 0 O}G(u(s,a))ds

+/0°° { 8 eQ<(t)—s> }G(u(s,a))ds/too [ 8 eQ(ﬁ)_s) ]G(U(s,a))ds

Remove contributions that will cause it to not converge to the origin
et 0 fT Pt o o 0
u(t,a) = [ 0 o0 l¢ —l—/o 0 0 G(u(s,a))ds — /t 0 Q=9 G(u(s,a))ds

= U(t)a+ /0 Ut — s)G(u(s,a))ds — /too V(t—$)G(u(s,a))ds

Notice that last n — k components of a do not enter the computation, we can take them to be zero. Next
we take the specific solution u(t, a)

t [eS)
u(t,a) =U(t)a + / Ut — s)G(u(s,a))ds — / V(t—$)G(u(s,a))ds
0 ¢
and see what it implies for the intial conditions «(0,a). Notice that
u;j(0,a) = aj, j=1,...,k

u;(0,a) = </OOOV(5)G(u(s,a))ds>j, j=k+1,....n

So the last n — k components of the initial conditionssatisfy
a; =vj(ar,...,ar) == u;(0,a1,...,ax,0,...,0), j=k+1,...,n.
Therefore the stable manifold is defined by

S={(y1,-- )y =1, k), j=k+1,...,n}.



e The iterative scheme for calculating an approximation to S:

— Calculate the approximate solution u(™)(t, a)

— Foreach j=k+1,...,n,v¢;(a1,...,a;) is given by the j-th component of u(™(0, a).

Note: Similarly can calculate U by taking ¢t = —t.

¢ Example:

Then
uO(t,a) = 8

1 : e 'a
uV(t,a) = 0

- —t t —(t—s) ® T 0 0
(2) _ e tay e 0 0 _ _
u (t7a/) = i 0 :| + A |: 0 0 :l |: 67280,% ds ; 0 6(t78) 672504% ds =

S 1 -4t —t\, 4
W (ta) = e a1+27e(f2t ) e ")aj
3 01

Next can show that u(*(t,a) — u®(t,a) = O(a}) and therefore we can approximate by o (a;) =
—za} + O(a?) and the stable manifold can be approximated by

1
S xg= —ga:% +0(?)

as x1 — 0. Similarly get
1
U:z = —gxg + O(25)

1.2.2 Note on invariant manifolds:

Notice that if a manifold is specified by a constraint equation
y = h(z), reRF yeR"*

and the dynamics given by

then condition

Dh(x)f(z,h(z)) = g(z,h(z))

suffices to show invariance. We’ll call this tangency condition. Exercise: Show that this is the case. If you’re
going to use this in the homework this week, you should prove it_first.




e FExample:
.’tl = -

Ty = 2%2—56%%

Show that the set
S = {z € R?|zy = ez}

is invariant. We have
3ex?(—x1) = 2ex? — bex?.

1.2.3 Calculating the stable manifold (Alternative Method - Taylor expansion):

Let
y = h(z) = az® + ba® + ca® + ...

Since invariant manifold we have:

Dh(x)i —y=0
we can match coefficients. For example
il‘l = —I
By = 2wy — bext

Ty = h(x1) = ax? + bxd + O(x})
we get f(x1,h(x1)) = —1, g(x1, h(z1) = 2(azi + bai) — Sex?
Dh(z)f(z,h(x)) = g(x,h(z))

I
(2ax1 + 3bx% +---)(—z1) = 2ax? +2bat — Hext+

Matching terms we get —2a =2a = a =0, —3b=2b—be = b=¢e.
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1.2.4 Example

j?l —X1
To = 219+ $%
Perko method:
-1 0 0
A_B_[O 2], F(.T)—G(.T)—|:x%:|
et 0 0 0 a,
o= o=l e[
Then
uO(t,a) = _ 8
(1)(t ) o [ e*tal
U ,a) = o
! "Tet=2 0 70 0 0
(2) _ € "aq € _ _ al
u'¥(t,a) = 0 ]+/0 [ 0 0][62%%}@ /t [O e2(ts):||:62sa2:|d8 [}16%(1
[ eta
u(t,a) = _ _ie—Q%a% }
(m) e ta; e tay
So ul™ (t,a) = Ll |2 2= u(t,a) = _1g-2ty2 and therefore we get 12(a1) = (u(0,a)),
4 1 4 1
f%a% and the stable manifold is given by
1
S xg= fzx%
as r1 — 0. What is the unstable manifold?
Taylor expansion:
Ty = h(z) =azx? +bxd +--.
Dh(x1) = 2ax;+3ba? +---
f(x1,h(z1)) = —m
g(x1, h(z)) = 2(ax? +bxd+---) +a?

then

Dh(z) f(z, h(x))
(2azy + 3bx3 + - )(—x1)

—2a=2a+1
—3b=2b

P

o=

g(, h(x))

2ax? + 27 + 2bx3 4 - -



and so

Direct Solution:

1.2.5 Global Manifolds

e In the proof S and U are defined in a small neighborhood of the origin, and are refered to as the local
stable and unstable manifolds of the origin.

Definition: Let ¢; be the flow of (1). The global stable and unstable manifolds of (1) at 0 are defined by
W#(0) = Ui<09:(5)

and
W*(0) = Ur>00:(5)

respectively.

The global stable and unstable manifold W#(0) and W*(0) are unique and invariant with respect to the
flow. Furthermore, for all z € W*(0), lim; o ¢+(2) = 0 and for all x € W*(0), lim;—, _ o ¢+ (x) = 0.

Corollary: Under the hypothesis of the Stable Manifold theorem, if Re()\;) < —a < 0 < < Re(An)
forj=1,...,kand m =k +1,...,n then given ¢ > 0,there exists a 0 > Osuch that if zop € N5(0) NS then

|pe(z0)| < ee™

for all ¢ > Oand if g € Ns(0) N U then
|1 (w0)| < e

for all ¢t < 0.
This shows thatsolutions starting in S sufficiently near the origin, approach the origin exponentially fast
as t — oo.

1.3 Center Manifold Theorem

Theorem (The Center Manifold Theorem) Let f € C"(E) where E is an open subset of R” containing
the origin and r > 1. Suppose that f(0) = 0 and that Df(0) has k eigenvalues with negative real part, j
eigenvalues with positive real part, and m = n — k — j eigenvalues with zero real part. Then there exists an
m—dimensional center manifold W¢(0) of class C"tangent to the center subspace E° of (2)at 0, there exists
an k—dimensional center manifold W#(0) of class C"tangent to the stable subspace E® of (2)at 0, and there
exists an j—dimensional center manifold W*(0) of class C"tangent to the unstable subspace E* of (2)at 0;
furthermore, W¢(0), W#(0) and W*(0) are invariant uder the flow ¢, of (1).

2 The Hartman-Grobman Theorem

Definition:

e Let X be a metric space (such as R™) and let A and B be subsets of X. A homeomorphism of A onto
B is a continuous one-to-one map of A onto B, h : A — B, such that h~! : B — A is continuous.

e The sets A and B are called homeomorphic or topologically equivalent if there is a homeomorphism of
A onto B.



e Two autonomous systems of differential equations such as (1)and (2)are said to be topologically equiva-
lent in a neighborhood of the origin, or to have the same qualitative structure near the origin if there is
a homeomorphism H mapping an open set U containing the origin onto a set V' containing the origin,
which maps trajectories of (1) in U onto trajectories of (2) in V' and preserves their orientation by
time.

Theorem (The Hartman-Grobman Theorem) Let Let f € C'(E) where E is an open subset of R"
containing the origin, and ¢;the flow of (1). Suppose that f(0) = 0 and that Df(0) has no eigenvalues
with zero real part. Then there is a homeomorphism H of an open set U containing the origin onto a set V'
containing the origin such that for each zy € U, there is an open interval Iy C R containing zero such that
for all xg € U and t € I

H o ¢y (o) = e M H(x0);

i.e., (1)and (2)are topologically equivalent in a neighborhood of the origin.

Ezample: The systems

a'cl o —X and .i‘l o -1 0 X1
i‘g - To + I‘% ig o 0 1 T
are topologically equivalent. Let 2o = (al, a2)

w7l

172+%x%
Then
—t —t
At e 0 —ay —ae
H = —
e H (o) {o etHaﬁ;aﬂ [<az+;,a%>et}
—t —t —t
—aq€ —ae —me
Ho T = H _ = _ _ =
Pleo) <{<a2+;a%>et—;a%e %D {<a2+;a%>et—;a%e 2 4 a2 %} [<az+;a%>et}
Remarks:

e Perko gives an outline of the proof and gives a method using successive approximations for calculating
H.

e However, computationally not very useful since to compute H by this method requires solving for the
flow (; first.

e Conceptually, it is extremely useful since knowing that such H exists (without needing to compute
it), allows us to determine the qualitative behavior of nonlinear systems near a hyperbolic equilibrium
point by simply looking at the linearization (without solving it).

3 Stability and Lyapunov Functions

Definition:

e An equilibrium point zgof (1) is stable if for all € > 0, there exists a 6 > 0 such that for all z € Ny(z)
and t > 0, we have ¢;(z) € N.(zg).

e An equilibrium point xqof (1) is unstable if it is not stable.

e An equilibrium point zgof (1) is asymptotically stable if it is stable and if there exists a § > 0 such
that for all € Ns(zo) we have lim;_, o ¢:(x) = xp.

Remarks:

e The about limit being satisfied does not imply that xgis stable (why?).



e From H-G theorem and Stable manifold theorem, it follows that hyperbolic equilibrium points are
either asymptotically stable (sinks) or unstable (sources or saddles).

o If x is stable then no eigenvalue of D f(zg) has positive real part (why?)
e 1yis stable but not asymptotically stable, then xyis a non-hyperbolic equilibrium point

Ezample: Perko 2.9.2 (c) Determine stability of the fequilibrium points of :

|:.1'31 :| _ |: —4x1 — 229+ 4

To T1T2

Equilibrium points are (0, 2), (1,0).

pfw) = |
D) = | 5y
pio) = |

What can we say in general about the stability of non-hyperbolic equilibrium points?

T1 | | —®2 —x1T2
(tg xr1 + iL’%



