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Supporting Information Content 

I. Mathematical Methods: 

This section includes two modeling techniques: system identification (ID) models and 

physiological models. Figs. S1, S3 are schematics for the two techniques respectively; Fig. S2 

shows HR response to both workload and ventilation; Fig. S4 shows results of the nonlinear 

optimal control for the static first principle model; and Fig. S5 shows HR response using the 

dynamic first principle model for the highest workload demand in Fig. 1.  

II. Simulation Results for all Experimental Subjects 

Figs.S6-S20 show simulation results of applying the two techniques to the five subjects’ data. 

III. Nonlinear Dynamic Models from System ID: 

A global nonlinear model is fit to explain the overall response of HR to a broad range of power 

generation. Fig. S21 shows the simulation result. 

IV. Cross Validation: 

Figs.S22-S23 and Table S1 show cross validation results for linear system identification; Fig. 

S24 shows cross validation results for the physiological modeling; Figs. S25-S26 shows cross 

validation results for the nonlinear system identification. 

V. Tables S2-S4: 

 Tables S2-S4 provide the necessary parameter values in the simulation. 

VI. System Identification Techniques: 

A pure technical introduction on system identification is provided. 
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Supporting Information 

I. Mathematical Methods 

1. System Identification Model        

System identification begins with measurements of the behavior (output) of the system when 

external influences are imposed (i.e. inputs to the system), and then determines a mathematical 

model for this interaction without going into the details of what is actually happening inside the 

system. Though there exist many sophisticated numerical methods to identify a linear time 

invariant (LTI) dynamic system in order to fit observed input-output data, in general, it is 

difficult to mathematically characterize a complicated dynamic system, e.g. nonlinear system or 

a high order system. To minimize the complexity of the requisite model and numerical methods, 

this paper mainly uses low order LTI models in observable canonical form (31). However, the 

entire physiological body system is a complex and not necessarily linear system. Therefore we 

carefully designed the experiments to ensure that the LTI model can provide a good approximate 

to the true system for each experiment.  

 

 

 

 

 

             As an example, a 2nd order linear model in observable canonical form is shown as follow: 

 1 1

2 2

( ) ( ) ( ) ( )
( ) ( ) ( )

h t a h t b u t x t
x t a x t b u t c

∆ = + +
∆ = + +

(SM-1) 

where 1 2 1 2, , , ,a a b b c  are constants, 𝑢 (workload power or ventilation) is the input signal, h  (HR) 

is the output signal, and x  is an internal state. In Fig. 7, we apply simple nonlinear models to fit 

the data for anaerobic exercise by using workload power as input (i.e., u=W). The nonlinear 

models have the same structure as (SM-1) except that ( )ib W t⋅  is changed to be a piecewise 

linear function ( )( )ib W t  in the form of (A schematic is shown in Fig. S1.):  

 
 Figure S1: System Identification schematic 
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           Given a certain order of this structure, we use nonlinear programming techniques (31) to 

search for parameter values that minimize the mean squared error between measured HR and 

simulated HR ( )h . We then iterate to find an order that gives a reasonable tradeoff between 

model complexity (order) and simulation error. Using observable canonical form reduces the 

search dimension of the nonlinear program without loss of generality. For readers unfamiliar 

with these methods, we provide a more technical introduction on system identification in SOM-

Section VIII: System Identification Techniques.  

         We also use both workload W and ventilation V data as inputs to fit HR data during the 

easy workout in Fig. 1. Fig. S2 shows the output h=H (in black) of a simple 2-state, 7-parameter 

linear model with both W and V as inputs 

1 1 1

2 2 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

h t a h t b v t d W t x t
x t a x t b v t d W t c

∆ = + + +
∆ = + + +  

 
Figure S2: HR response to both workload and ventilation: (A)  HR (red) and 
dynamic fit (black) to inputs of workload (blue in the top figure) and natural 
ventilation (blue in the lower figure); (B) is a zoomed in version of (A). 
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2. First Principle Model 

In this section, we will focus on establishing the 1st principle model in Equation (2-4) and 

explain how we carried out the static and dynamic analysis (Figs. 3-4) using this physiological 

model. The next section will address the issue about how we get simulation results in Fig. 7 by 

adding additional complexities into the 1st principle model in (2,4). 

        The block diagram of the basic circulatory system is shown in Fig. S3 (30). The basic task 

of the cardiovascular system is to satisfy metabolic requirement for O2, glucose, and other 

nutrients while simultaneously removing CO2 and the other end products of metabolism. To 

fulfill these tasks, the heart pumps blood through the pulmonary circuit and the systemic circuit. 

The heart consists of four chambers of two types: atria and ventricles. For simplicity, we will 

refer to the right atrium and right ventricle as the right heart, and the left atrium and left ventricle 

as the left heart. The left heart receives blood from the lungs which is rich in O2, and pumps it 

into the systemic arteries distributing O2 and metabolic substrates to end-organs. Metabolic end 

products are removed as O2-depleted blood leaves the systemic peripheral tissues, enters the 

central venous compartment and returns to the right heart. The right heart pumps blood into the  

 

Figure S3: Block diagram of the basic cardiovascular model (30). 
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pulmonary arterial circulation, where O2 is taken up from alveoli and CO2 is transferred to 

alveoli and exhaled. Blood returns to the left heart via the pulmonary veins. The variables in the 

figure are explained in the following sections. 

        Our model is based on the circulatory circuit diagram, using standard mathematical 

descriptions of circulation, with a focus on modeling purely aerobic exercise. We only model 

blood flow and O2 and we do not model CO2, pH, glucose and other variables. CO2 and pH are 

important signals, but during aerobic exercise in young, fit adults, changes in CO2 correlate with 

changes in O2 such that any signal that depends on CO2 is approximately a function of O2. 

Moreover, during short aerobic exercise, pH is almost constant. By modeling blood flow and O2, 

the model captures the overall physiologic response during low level exercise in young, fit adults. 

2.1 Basic Model 

2.1.1 Blood Circulation Model 

The circulation of blood is described by well-established models (25-30). Here we build a simple 

model based on the models developed in Peskin et al. (29) and Batzel et al. (30) to explain 

cardiovascular control systems. 

       We distinguish four compartments of the circulatory system, i.e., the arterial and venous 

compartments of the systemic and pulmonary circuits, treating each compartment as a compliant 

vessel with no resistance to blood flow. That is, we assume that blood volume in the 

compartment is determined by pressure in the compartment. A simple linear relationship 

between pressure and volume in such a compartment is assumed: 

 
 

as as as

vs vs vs

ap ap ap

vp vp vp

V c P
V c P
V c P
V c P

=
=
=

=

 

V variables are volumes, P variables are pressures, and c is the compliance for a=arterial, 

v=venous, s=systemic, and p=pulmonary compartments. 

      The rate of change /V dV dt=  for the volume V in a compartment is the difference between 

the flow into and flow out of the compartment, described by the following equations: 
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as as as l s

vs vs vs s r

ap ap ap r p

vp vp vp p l

c P V Q F
c P V F Q
c P V Q F
c P V F Q

= = −
= = −
= = −
= = −

 

 

 

 

       (SM-2) 

Q variables are the cardiac outputs for l=left heart and r=right heart; F variables are the blood 

flow for s= systemic and p= pulmonary circulation.  We will establish models for cardiovascular 

output Q and blood flow F in the following parts. 

Cardiovascular output 

        Cardiac output is a function of heart rate (H) and stroke volume (Vstr), the amount of blood 

pumped with each cardiac contraction: 

     co strQ HV= (SM-3) 

and  .str diast syst diast v syst aV V V c P c P= − = −  

Here we regard the ventricle as a compliance vessel in which compliance changes over time.

 is end-diastolic blood volume of the relaxed ventricle and  is the end-systolic blood 

volume of the maximally contracted ventricle.  is the pressure in the arteries supplied by the 

ventricle and  is the pressure in the veins that fill it. Usually  is very small and  is 

much larger. A simple special case when  yields a description of stroke volume:  

   str diast vV c P=   (SM-4) 

Combining equations (SM-3) and (SM-4) describes cardiac output for the left and right 

heart respectively: 

 
  

r r vs

l l vp

Q c H P
Q c H P

= ⋅ ⋅
= ⋅ ⋅

     (SM-5) 

rc  and lc  are diastc  for the right and left heart respectively. 

Blood Flow in the Circulation 

        We assume that the systemic and pulmonary circulation acts like a pure resistance vessel to 

blood flow. By Ohm’s law,
   

diastV systV

aP

vP systc diastc

0systc =
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( ) /
( ) /

s as vs s

p ap vp p

F P P R
F P P R

= −
= −

    (SM-6)   

where R variables represent resistance to blood flow.  

        In our model, we assume that the pulmonary resistance pR  is a constant parameter, while the 

peripheral resistance sR  is decreased during exercise and the decrease is determined by local 

metabolic control. The purpose of decreasing peripheral resistance in the arterioles is to increase 

blood flow and regional delivery of , glucose, and other substrates as needed. With exercise, 

local dilation of the arterioles is triggered by local release of vasodilating factors. We assume 

that peripheral resistance Rs  is determined as (29):  

 2 0[ ]  s v sR A O R= ⋅ +  (SM-7) 

A and 0sR   are two constants; and 2[ ]vO  is the tissue oxygen content which will be introduced 

later. 

Blood Pressure Model         

Assuming a constant total blood volume : 

    as vs ap vp totV V V V V+ + + =     (SM-8) 

Combining equations (SM-2), (SM-6), (SM-5), (SM-8) yields the following dynamic blood 

circulation model: 

 

( )
( )

( )
( )

/

   
/

/

as l vp

vs r vs

a

vp vp total as as vs vs ap a

p vs

p

r

as vs

as vs

ap vp

as s

vs s

ap p

H P R
R c H P

H P

c P V c P c P

R

c P

c P P P
c P P P

c P

c

c P P

=

= − +

= −

−

+

−

=

⋅ ⋅ −
⋅ ⋅

⋅

−

−⋅







      (SM-9) 

Note that the equation for  is not a dynamic equation. 

2.1.2 Tissue Oxygen Transport Model 

The equation describing oxygen exchange in the tissue compartment is (27, 29, 30):  

 
2, 2 2 2[ ] ([ ] [ ] ) T O T s a vO M Fv O O= − + −

          (SM-10) 

The left hand side of the equation represents the change in O2 content across the tissue 

compartment, which is calculated by multiplying the fixed effective O2 volume 
2,T Ov  with the 

2O

totV

vpP
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change in O2 content . The right hand side of the equation describes the net volume changes 

in terms of the metabolic consumption of O2 denoted by M and its supply described by the net 

change in the arterial and venous blood O2 contents denoted, respectively, by  and .  

       We use the following empirical formula for the resulting metabolic rate M: 

 0M W Mρ= ⋅ +  

where w  is the ergometric workload imposed on the subject during exercise,  is the 

metabolic rate in systemic tissue corresponding to zero workload and is a positive constant 

parameter. Moreover, we assume that tissues and venous blood gases are in equilibrium; tissue 

oxygenation 2[ ]TO  is the same as venous oxygenation 2[ ]vO , i.e.  

 2 2[ ] [ ]T vO O=  

2.1.3 The Basic Model 

Equations (SM-9),  (SM-10) are combined to be the first principle model with 4 states and 1 

unknown controllers: 

 

( )

[ ] [ ]( )
( )

2, 2

0

0

2

2 2

( ) /

   

/
( ) /

[

[ ]

] ( )

( )

as l vp as vs

vs r vs

ap r vs ap vp

T O s av v

vp vp total as as vs vs a

a

p ap

s

s T

s

s

v

as s

vs s

ap p

H P P P R
R c H P

H P P P R

O W M

V

R A O
H u

F

c

c

v

c P c P c

c P
c P P P
c

c P

O

P

P

O

R

ρ

= ⋅ − −

= − ⋅

= ⋅ − −

− ⋅ + + −=

=

= ⋅

=

⋅
⋅

⋅

⋅

− +

+

−

+

⋅









   (SM-11)   

where u(•) is the control function of heart rate H. The model describes a 4-state nonlinear 

dynamic system (again, note that the equations for  and sR  are not dynamic equations.). We 

will describe how to determine the control function below. 

2.2 Control Mechanisms 

The cardiovascular control system is complex and has been studied intensively (26, 30), but 

unresolved questions and controversies about HR control and HRV persist.  Homeostasis is 

manifested in healthy physiological states, meaning that steady state behavior is maintained 

despite varying inputs to the system (4, 5, 25, 26, 30). The physiologic response to perturbations 

2[ ]TO

2[ ]aO 2[ ]vO

0M

ρ

vpP
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(such as exercise in our study) reveals the dynamic behavior of the control systems that maintain 

homeostasis.  

 Exercise is an important physiologic perturbation. The control objective of normal 

physiology is to produce sufficient energy for muscle activity, while maintaining critical biologic 

parameters within an acceptable range. Ventilation, vascular resistance, and blood flow are the 

primary factors that govern operation of the cardiopulmonary system, maintaining a tradeoff 

between  energy production requirements and physiological equilibrium. In order to deliver 

sufficient O2 during exercise, ventilation increases, cardiac output rises and skeletal muscle 

arterioles dilate. The magnitude of these responses is bounded in order to remain acceptable 

close to equilibrium. The degree to which they are bounded highlights how the cardiopulmonary 

system manages this tradeoff. Critical physiologic variables must be controlled so that actual 

structural damage is prevented (25, 26, 30). The arterial partial pressure of oxygen, , is the 

key regulated variable with a set-point of ~100 mm Hg. As a result of this tight control on 
2,a OP , 

the hemoglobin in systemic arterial blood is kept saturated with oxygen yielding (in the absence 

of anemia) a systemic arterial oxygen content [O2]a  of around 20 ml O2/100 ml blood.  This is 

demonstrated by the nearly constant SpO2 value which is maintained during exercise, an 

observation supported both by the literature and our experimental data.  In addition, the arterial 

partial pressure  is controlled by the baroreceptor loop, a short-term feedback control 

mechanism.  

         The intent here is not to model the entire circulatory control system in detail. Instead, we 

focus on nervous system control over heart rate H to guarantee “sufficient oxygen” and maintain 

 at a certain level. Rather than model the control system in detail, we construct a feedback 

controller which regulates heart rate based on several important system state variables, e.g. blood 

pressure, oxygen saturation, energy reserve. Here, we assume that the objective of the 

cardiovascular control system is to stabilize/balance those important variables around their (pre-

)defined/safe values as well as to minimize the work done by the heart. Thus the loop can be 

considered as a stabilizing and optimizing feedback. We will carry out steady state analysis first 

and then explain the dynamical cases. 

       Before carrying out the analysis, we simplify notations by defining the state vector:  

2,a OP

asP

asP
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 4
2( , , ,[ ] )T

as vs ap vs P P P O R= ∈  

and the parameter vector, 

 
2

14
0 2 0 ,( , , , , , , , , ,[ ] , , , , )    T

as vs ap vp l r tot p s a T Op c c c c c c V R R O A M V Rρ= ∈ (SM-12) 

Then the model (4-state nonlinear system) can be defined as:  

 ( ( ), , , )s F s t p W H=  

       In the following analysis, we shall not fit the parameter vector p in (SM-12), but instead, we 

take physiologic nominal values from the literature for all parameters p, which is shown in Table 

2-3. For all experimental subjects, we use the same parameter values for p except for the two 

parameters of cardiac output, cl  and cr . For these, we use larger values for the larger subjects. 

The parameters that we fit will be introduced later. 

Static Analysis 

To obtain a steady state model for the cardiovascular system, we set the right side of equation 

(11) to be 0, and solve for mean systemic arterial blood pressure and oxygen saturation as a 

function of heart rate and workload, (Pas, )=f(H,W), where Pas is the mean systemic arterial 

blood pressure and  is [O2]a –[O2]T: 

 
( )

2

2

2

2

2 0

2 2 0

( ) (1 [ ] )
( [ ] )

[ ] /

tot as O r a r s
as O

r as a as s ap p r

as a as s ap p
tot as O

V c M A c A O H c R H
P A M

c B c A O c R c R c H
MO c A O c R c R B H

V c M A

+ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅
= − ⋅

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅

∆ = ⋅ ⋅ ⋅ + ⋅ + ⋅ +
+ ⋅ ⋅

(SM-13)

 

where ap vpas vs

r r l l

c cc cB
c c c c

= + + + . Using the two equations, we get the mesh plot in Fig 3. 

       As discussed above, we model the regulation on H as optimal feedback control to minimize 

the deviation of the important physiologic variables from normal resting values. Mathematically, 

the optimal H is solved by minimizing the following objective function: 

 ( ) ( ) ( )2

2 2 2* * *
2 2min   P as as o Hq P P q O O q H H− + ∆ −∆ + − (SM-14) 

2O∆

2O∆
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Here 
2

, ,P o Hq q q  are weighting factors and * * *
2, ,asP O H∆ are steady values for 2, ,asP O H∆  at the 

referenced workload level W*. 

             To solve the optimization problem, we linearize the two equations in (SM-13) for Pas, 

ΔO2 around the referenced point ( * * * *
2, , ,asP O H W∆ ) and get the following two linear expressions 

for Pas, ΔO2: 

 
* * *

1 1
* * *

2 2 2 2

( ) ( )

( ) ( )
as asP P a H H b W W

O O a H H b W W

− = ⋅ − + ⋅ −

∆ −∆ = ⋅ − + ⋅ −
 

Then given a tradeoff weighting vector ( )2
, ,P O Hq q q , we can solve the optimization problem 

(SM-14) and the result is in the form of * *
3 ( )H H b W W− = ⋅ − . By tuning the tradeoff 

weighting vector ( )2
, ,P O Hq q q , we are able to get a physiologically plausible solution which is 

shown as the solid line in Fig. 3. The tradeoff weighting vector ( )2
, ,P O Hq q q is set as follows: 

• W=0~110watts: Pq =3, =107, Hq =3; 

• W=110~250watts: Pq =6, =107, Hq =6; 

The different q values  reflect different tradeoffs between Pas, O2, and HR as workload increases. 

        We can also solve the optimization 

problem in (SM-14) without doing any 

linearization. Substituting (Pas, 

)=f(H,w) in (SM-13) into the 

objection function in (SM-14), the 

optimization problem  (SM-14) becomes 

a non-constrained optimization problem 

with the objective function in terms of H 

and W. Given the trade-off weighting 

vectors ( )2
, ,P O Hq q q , we can solve the 

optimization problem and find the 

optimal controller for H in terms of h(W) 

which is a nonlinear function.  By tuning 

2Oq

2Oq

2O∆

 
Figure S4: Nonlinear optimal control for static 1st 
principle model (HR: red; Pas: blue; 2O : green). 
Solid lines are the solutions by changing trade-off 
weight vectors between 0~110 watts and 110~250 
watts. Dashed lines are the hypothetical solutions by 
using the same trade-off weight vectors for 110~250 
watts as 0~110 watts. 
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the tradeoff weighting vector ( )2
, ,P O Hq q q , we are able to get a physiologically plausible solution 

which is shown in Fig. S4. The tradeoff weighting vector ( )2
, ,P O Hq q q is set as follows: 

• W=0~110watts: Pq =2, =107, Hq =1.5; 

• W=110~250watts: Pq =4, =107, Hq =4; 

 Notice that we do not fit parameter vector p in (SM-12), but instead we just tune the tradeoff 

weighting vector. This means the model is over-determined and we require few parameters to fit 

the data, consistent with our findings based on system identification techniques. Fitting the 

tradeoff weighting vector in cost function ensures appropriate input-output behavior and has a 

physiologically plausible interpretation since it can determine how much each individual 

physiological term influences the cardiovascular control system.  

Dynamic Analysis 

Next, we determine the controller  in the dynamic model (SM-11). Here, we assume that 

the objective of the cardiovascular control system is to quickly and sufficiently stabilize 

important physiologic variables to (pre-)defined/safe levels. Mathematically this can be obtained 

by minimizing the following cost function: 

 ( ) ( ) ( )( )2

2 2 22 * 2 * 2 *
2 20

( ( )) ( )   P as as O HJ u q P t P q O O q H H dt
∞

⋅ = − + ∆ −∆ + −∫ (SM-15) 

Here 
2

, ,P o Hq q q  are weighting factors and * * *
2, ,asP O H∆ are steady values for 2, ,asP O H∆  at the 

referenced workload level W*. 

 

       In each interval exercise experiment shown in Fig. 4, there are two exercise levels. For each 

interval test, there is a steady state value s* corresponding to the lower level workload. We 

introduce the transformation ξ(t)=s(t)-s* and linearize the model (SM-11)  around : 

 
*

*

( ) ( ) ( ( ) ),        0
(0) (0) ,
t A t B H t H t

s s
ξ ξ

ξ

= + − ≥

= −



 

where  

2Oq

2Oq

( , )u t ⋅

0ξ =
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* * *

* * *

, ,

, ,

( , , , )

( , , , )
s s W W H H

s s W W H H

F s p W HA
s

F s p W HB
H

= = =

= = =

∂
=

∂

∂
=

∂

     

H* and W* are corresponding heart rate and workload for the lower exercise level in each interval 

exercise test, which is 0 watts and 100 watts in our case.  

        Defining
2

( ,0,0, )P OC q q= , the cost function (SM-15) takes on the form: 

 ( ) ( )
2 2

0
ˆ( ( )) ( ) ( )HJ u C t q u t dtξ

∞
⋅ = +∫  

where *ˆ( ) ( )u t H t H= − . From control theory, the solution of this linear-quadratic regulator 

problem is given by a linear feedback law (32):  
 ˆ( ) ( ),     u t K tξ= −   

where  is given by:  

 1 T
HK q B P−=  

and P is found by solving the continuous time algebraic Ricaati equation 

 1 0T T T
HA P PA PBq B P C C−+ − + =  

Therefore we obtain the controller on heart rate H in the following form: 

 ˆ( ) ( ) ( ) ( ) .l lH t u t u t H K t Hξ= = + = − +  

       As we do in static analysis, we fit the weighting vector 
2

, ,P o Hq q q   instead of fitting the 

parameter vector p to get the simulation results shown in Fig. 4. For different interval exercises, 

we have different  values. Those  values for different interval exercises reflect different 

tradeoffs between Pas, O2, H, as their means increase. For each subject, those q values are shown 

in Table 4 and the corresponding simulation results are shown in SOM-Section II: Simulation 

Results for all Experimental Subjects. 

However, if we apply this 1st principle aerobic model for the highest interval test in Fig. 1, the 

best simulation results we can obtain by tuning the weighting vector q is shown in Fig. S5, from 

which we can see that our aerobic model fails to capture most HR dynamics for anaerobic 

exercise.  

K

q q
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Figure S5: HR response using 1
st
 principle model for the highest workload (blue) 

demand in Fig. 1. A physiological model with optimal controller is simulated with 

workload as input (blue) and HR (black) as output, and compared with collected HR data 

(red).   

 

 



Figure S6: Subject #1 performed three separate experiments of less than 6 minutes each 
on a cycle ergometer. HR (left axis, red) is plotted for three different workload demands 
(right axis, blue). The workload profiles are similar but shifted square waves of 0-50 
watts (lower), 100-150 watts (middle), and 250-300 watts (upper). A one state linear 
dynamic (“black box”) model with 3 parameters (different for each case) was fit using 
workload input and HR output. The optimal parameter values (a, b, c)≈ (-0.22, 0.11, 
10.2) at 0 watts differ greatly from those at 100 watts (-0.06, 0.012, 4.6) and at 250 watts 
(-0.003, 0.003, -0.27). Simulations of these 3 different models with the 3 corresponding 
workload inputs are in black. Breathing was spontaneous (not controlled), and SpO2  was 
essentially constant throughout (not shown).   
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Figure S7: Subject #1’s data: two experiments with input of controlled frequency sweeps in 
ventilation flow rate (lower plot) with fixed background workload demand of 0 watts (black) 
or 100 watts (blue). Subject #1 controlled breathing to follow a preprogrammed frequency 
sweep that spanned the natural breath frequencies at these workload levels. The ventilation 
data are raw speed of inhalation and exhalation at the mouthpiece. For each data set, a 
second order linear model was fit with airflow rate input (lower plot) and HR output (upper, 
data in red). Simulations of HR are in upper plot for 0 watts (black) and 100 watts (blue). 
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Figure S8: Subject #1’s data: optimal control model of response to two different workload 
(blue) demands, approximately square waves of 0-50 watts (lower) and 100-150 watts 
(upper). For each data set, a first principle model with optimal controller is simulated with 
workload as input (blue) and HR (black) as output, which can be compared with HR data 
(red). Simulations of blood pressure (Pas, purple) and tissue oxygen saturation ([O2]T, green) 
are consistent with the literature but were not measured.  
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Figure S9: Subject #2 performed three separate experiments of less than 6 minutes each on 
a cycle ergometer. HR (left axis, red) is plotted for three different workload demands (right 
axis, blue). The workload profiles are similar but shifted square waves of 0-50 watts (lower), 
50-100 watts (middle), and 100-150 watts (upper). A one state linear dynamic (“black box”) 
model with 3 parameters (different for each case) was fit using workload input and HR 
output. The optimal parameter values (a, b, c)≈ (-0.11, 0.079, 6.54) at 0 watts differ greatly 
from those at 50 watts (-0.375, 0.017, 2.63) and at 100 watts (-0.014, 0.0095, 0.62). 
Simulations of these 3 different models with the 3 corresponding workload inputs are in 
black. Breathing was spontaneous (not controlled), and SpO2 was essentially constant 
throughout (not shown).   
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Figure S10: Subject #2’s data: two experiments with input of controlled frequency sweeps in 
ventilation flow rate (lower plot) with fixed background workload demand of 0 watts (black) or 
50 watts (blue). Subject #2 controlled breathing to follow a preprogrammed frequency sweep that 
spanned the natural breath frequencies at these workload levels. The ventilation data are raw 
speed of inhalation and exhalation at the mouthpiece. For each data set, a second order linear 
model was fit with airflow rate input (lower plot) and HR output (upper, data in red). Simulations 
of HR are in upper plot for 0 watts (black) and 50 watts (blue). 
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Figure S11: Subject #2’s data: optimal control model of response to two different 
workload (blue) demands, approximately square waves of 0-50 watts(lower) and 100-150 
watts (upper). For each data set, a first principle model with optimal controller is 
simulated with workload as input (blue) and HR (black) as output, which can be compared 
with HR data (red). Simulations of blood pressure (Pas, purple) and tissue oxygen 
saturation ([O2]T, green) are consistent with the literature but were not measured.  
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Figure S12: Subject #3 performed three separate experiments of less than 6 minutes each on a 
cycle ergometer. HR (left axis, red) is plotted for three different workload demands (right 
axis, blue).  The workload profiles are similar but shifted square waves of 0-50 watts (lower), 
50-100 watts (middle), and 100-150 watts (upper). A one state linear dynamic (“black box”) 
model with 3 parameters (different for each case) was fit using workload input and HR 
output. The optimal parameter values (a, b, c)≈ (-0.18, 0.10, 9.47) at 0 watts differ greatly 
from those at 50 watts (-0.098, 0.037, 6.70) and at 100 watts (-0.028, 0.015, 1.59). 
Simulations of these 3 different models with the 3 corresponding workload inputs are in 
black. . Breathing was spontaneous (not controlled), and SpO2 was essentially constant 
throughout (not shown).   
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Figure S13: Subject #3’s data: two experiments with input of controlled frequency sweeps in 
ventilation flow rate (lower plot) with fixed background workload demand of 0 watts (black) 
or 50 watts (blue). Subject #3 controlled breathing to follow a preprogrammed frequency 
sweep that spanned the natural breath frequencies at these workload levels. The ventilation 
data are raw speed of inhalation and exhalation at the mouthpiece. For each data set, a second 
order linear model was fit with airflow rate input (lower plot) and HR output (upper, data in 
red). Simulations of HR are in upper plot for 0 watts (black) and 50 watts (blue). 
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Figure S14: Subject #3’s data: optimal control model of response to two different workload 
(blue) demands, approximately square waves of 0-50 watts (lower) and 50-100 watts (upper). 
For each data set, a first principle model with optimal controller is simulated with workload 
as input (blue) and HR (black) as output, which can be compared with HR data (red). 
Simulations of blood pressure (BP, purple) and tissue oxygen saturation ([O2]T,  green) are 
consistent with the literature but were not measured. 
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Figure S15: Subject #4 performed three separate experiments of less than 6 minutes each 
on a cycle ergometer. HR (left axis, red) is plotted for three different workload demands 
(right axis, blue). The watt profiles are similar but shifted square waves of 0-50 watts 
(lower), 100-150 watts (middle), and 220-320 watts (upper). A one state linear dynamic 
(“black box”) model with 3 parameters (different for each case) was fit using watts input 
and HR output. The optimal parameter values (a, b, c)≈ (-0.15, 0.051, 6.41) at 0 watts differ 
greatly from those at 100 watts (-0.12, 0.023, 7.32) and at 220 watts (-0.0064, 0.0036, -
0.039). Simulations of these 3 different models with the 3 corresponding workload inputs 
are in black. Breathing was spontaneous (not controlled), and SpO2  was essentially 
constant throughout (not shown).   
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Figure S16: Subject #4’s data: two experiments with input of controlled frequency sweeps in 
ventilation flow rate (lower plot) with fixed background workload demand of 0 watts (black) or 
100 watts (blue). Subject #4 controlled breathing to follow a preprogrammed frequency sweep 
that spanned the natural breath frequencies at these workload levels. The ventilation data are raw 
speed of inhalation and exhalation at the mouthpiece. For each data set, a second order linear 
model was fit with airflow rate input (lower plot) and HR output (upper, data in red). 
Simulations of HR are in upper plot for 0 watts (black) and 100 watts (blue). 
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Figure S17: Subject #4’s data: optimal control model of response to two different workload 
(blue) demands, approximately square waves of 0-50 watts (lower) and 100-150 watts 
(upper). For each data set, a first principle model with optimal controller is simulated with 
workload as input (blue) and HR (black) as output, which can be compared with HR data 
(red). Simulations of blood pressure (BP, purple) and tissue oxygen saturation ([O2]T, green) 
are consistent with the literature but were not measured.  
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Figure S18: Subject #5 performed three separate experiments of less than 6 minutes each on a 
cycle ergometer. HR (left axis, red) is plotted for three different workload demands (right axis, 
blue).  The workload profiles are similar but shifted square waves of 0-50 watts (lower), 50-100 
watts (middle), and 100-150 watts (upper). A one state linear dynamic (“black box”) model with 
3 parameters (different for each case) was fit using workload input and HR output. The optimal 
parameter values (a, b, c)≈ (-0.13, 0.064, 7.05) at 0 watts differ greatly from those at 50 watts (-
0.045, 0.015, 2.93) and at 100 watts (-0.036, 0.01, 2.54). Simulations of these 3 different 
models with the 3 corresponding workload inputs are in black. Breathing was spontaneous (not 
controlled), and SpO2 was essentially constant throughout (not shown).   
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Figure S19: Subject #5’s data: two experiments with input of controlled frequency sweeps in 
ventilation flow rate (lower plot) with fixed background workload demand of 0 watts (black) or 
50 watts (blue). Subject #5 controlled breathing to follow a preprogrammed frequency sweep 
that spanned the natural breath frequencies at these workload levels. The ventilation data are 
raw speed of inhalation and exhalation at the mouthpiece. For each data set, a second order 
linear model was fit with airflow rate input (lower plot) and HR output (upper, data in red). 
Simulations of HR are in upper plot for 0 watts (black) and 50 watts (blue). 
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Figure S20: Subject #5’s data: optimal control model of response to two different workload 
(blue) demands, approximately square waves of 0-50 watts (lower) and 100-150 watts (upper). 
For each data set, a first principle model with optimal controller is simulated with workload as 
input (blue) and HR (black) as output, which can be compared with HR data (red). Simulations of 
blood pressure (Pas, purple) and tissue oxygen content ([O2]T, green) are consistent with the 
literature but were not measured.  

Time (seconds) 

0 50 100 150 200 250 300 350 400 450 80 

100 

120 

140 

160 

0 50 100 150 200 250 300 350 400 450 
0 

40 

80 

120 

160 

HR data 
HR model 

Workload 
(watts) 

[O2 ] T  
(ml O2/ 1 L blood) 

Pas 
(mmHg) 

28 



Figure S21: Subject #2 performed two separate experiments of less than 6 minutes each on a 
cycle ergometer. HR (left axis, red) is plotted for 2 different watts demands (blue) including  
exercise levels between 0 watts and 150 watts.  For each experiments, a piecewise 1st order 
linear model (“black box”) with 2 linear pieces and 7 parameters was fit using workload 
input and HR output. Simulations of  this model with the 2 watts input are in black.   

0 50 100 150 200 250 300 350 400 450 500 0 

40 

80 

120 HR data 

Workload 
(watts) HR model 

0 50 100 150 200 250 300 350 400 0 

40 

80 

120 

160 

Workload 
(watts) 

HR data 

HR model 

Time (seconds) 

III.     Nonlinear Dynamic Model from System ID 
 

We have shown that overall HR response to a broad workload is a nonlinear system, by using 
experiments with limited watts range and individual but different linear models. To explore global 
nonlinear models, we did experiments including exercise levels between  0 watts and 150 watts 
and found a piecewise linear model to fit the data. The following two figures show two 
experiments data and the corresponding fitting results. In both of the fittings, we use piecewise 1st 
order linear model with 2 linear pieces and 7 parameters, which is shown as follows: 
  
 
 
Constants                                      are fitted to minimize the mean squared error between h(t) and 
HR data. In SI-Section IV: Cross Validation, we show how validation results change with number 
of pieces and we claim that 2 linear pieces are an optimal balance between model order, fit, and 
cross validation. Wider watts ranges would require more states and nonlinearities. 
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IV.    Cross Validation 
 In this section, we perform cross validation on our models: the linear system identification 

model, the first principle model, and the nonlinear system identification model. In each cross 

validation, a subject performs two different exercise tests with different but comparable 

workload demands. We fit our models by using one set of experimental data (i.e. training data) 

and use the fitted models to perform prediction on the other set of experimental data (i.e. 

validation data). Moreover, in cross validation for linear system identification models and 

nonlinear system identification models, we fit and simulate different models with different 

complexities and we show how validation results correlate with the model complexities. 

1. Linear System Identification Model 

30 

                                           

Fig. S22 shows an example of validation result for linear system identification models on two 

data sets.  The subject performed two separate experiments of less than 8 minutes each on a cycle 

ergometer including exercise levels between 50 watts and 100 watts. We use the upper data set 

(called as data set 1) as training data and the lower data set (called as data set 2) as validation 

data. In Fig. S22,  a 1st order linear dynamic (“black box”) model (i.e., Δh=ah+bW+c) with 3 

parameters (a,b,c) was fit using data set 1 with workload input and HR output and simulations of 

this model is done with the 2 workload inputs. From the simulation results, we can see that the 1st 

order linear dynamic model can predict HR response to workloads well. 
 

To further address the over-fitting issue and to study how validation results correlate with model 

complexities, we then fit and simulate different models with different complexities on the two 

data sets. Fig. S23 and Table S1 shows the cross validation results. The classes of models we 

compare in the figure are: linear static model, 1st order linear dynamic model, 2nd order linear 

dynamic model, 3rd order linear dynamic model, and 4th order linear dynamic model. For each 

class of models, we do three different fittings: using data set 1 to fit a model; using data set 2 to 

fit a model; using both data set 1 and data 2 fit a model. Then we use those models to simulate 

both of the two data sets and calculate the corresponding root mean squared errors on those data 

sets. The root mean squared error is defined as: 

 
 

where h(t) and HR(t) are respectively the simulated and the measured heart rate at time point t, 

and N 

( )2
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1RMS= ( ) ( )N
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Figure S22: Subject #2 performed two separate experiments of less than 8 minutes each 
on a cycle ergometer including exercise levels between 50 watts and 100 watts.  HR (left 
axis, red) is plotted for two different workload demands (right axis, blue). A 1st order 
linear dynamic (“black box”) model (i.e., Δh=ah+bW+c) with 3 parameters (a,b,c) was 
fit using the upper exercise data with workload input and HR output.  Simulations of this 
model with the 2 workload inputs are in black.  
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is the total number of time points. The three markers in each line in Fig. S23 for each class of 

models show the simulated errors using the corresponding three different fitted models, which 

are, from left to right, the fitted model using data set 1, the fitted model using the two data sets; 

the fitted model using data set 2. Not surprisingly, Fig. S23 and Table S1 show that the RMS 

error becomes roughly smaller with increased fit complexity  on the training data. However, the 

marginal benefit  starts diminishing  as the  model complexity increases; moreover, the 

validation RMS error starts to increase if the model is very complex (see the RMS error for 3rd 

linear dynamic model and RMS error for 4th linear dynamic model).  
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Figure S23: In this figure, we use the two experiments’ data in Supplementary Figure 18 to 
show how validation results correlate with the complexity of the model. We call the upper 
experiment data set in Fig. S22 data set 1 and  the lower one data set 2. The classes of models we 
compare in the figure are: linear static model (blue), 1st order piecewise linear models with 1 
piece (orange), 2 pieces (red), 3 pieces (green), and 4 pieces (purple). For each class of models, 
we do three different fittings: using data set 1 to fit a model; using data set 2 to fit a model; using 
both data set 1 and data 2 fit a model. Then we use those models to simulate the two data sets 
and calculate the corresponding mean squared errors on those data sets. The mean squared error 
is defined as:                                           

 
 
where h(t) and HR(t) are respectively the simulated and the measured heart at time point t, and N 
is the total number of time points. The three markers in each line for each class of models show 
the simulated errors using the corresponding three different fitted models, which are, from left to 
right, the fitted model using data set 1, the fitted model using the two data sets; the fitted model 
using data set 2.  From this plot, we claim that 2 linear pieces are an optimal balance between 
model order, fit, and cross validation.  
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Linear Static 

1st order  
2nd order 

3rd order 

4th order 

Training Validation Validation Training Fitting together 

Data 1 Data2 Data 1 Data2 Data 1 Data2 

Linear Static  3.9306 4.0603 4.3980 3.5160 4.0582 3.6503 

1st  order linear dynamic 1.9818 2.1553 2.5446 1.4197 2.0803 1.7402 

2nd order linear dynamic 1.8200 1.4347 2.5289 1.3900 2.0631 1.7190 

3rd  order linear dynamic 1.8034 1.4297  2.4782 1.3815 1.8654 1.4323 

4th order linear dynamic 1.8006 1.4285 2.5198 1.3487 1.7689 1.4194 

Table S1, RMS error of cross validation for linear dynamic models  



Figure S24: Subject #2’s data using first principle models: optimal control model of response to 
the two different workload (blue) demands including exercise levels between 50 watts and 100 
watts.  The three tradeoff parameters in the cost function of the first principle model are fitted using 
the upper exercise data (i.e. training data) with workload input and HR output. This first principle 
model is simulated for each data set with workload as input (blue) and HR (black) as output, which 
can be compared with measured HR data (red).  Simulations of blood pressure (Pas, purple) are 
consistent with the literature but were not measured.  

2. First Principle Model 
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Figure S24 shows  the validation result for  the  1st principle model. We still use data set 1 as training 

data and  data set 2 as validation data. The three tradeoff parameters (qp, qO, qH) in the cost function of 

the first principle model are fitted  using data set 1 (training data) with workload input and HR output. 

This first principle model is simulated for each data set with workload as input (blue) and HR (black) 

as output, which can  be compared with measured HR data (red).  Simulations of blood pressure (Pas, 

purple) and tissue oxygen saturation ([O2]T, green) are consistent with the literature but were not 

measured. . From the simulation results, we can see that the 1st  principle model can predict HR 

response to workloads well. 
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3. Nonlinear System Identification Model—Piecewise Linear Dynamic Model 
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We carried out cross validation on the nonlinear system  identification  model by repeating the 

same process  as that for the linear system  identification model in SOM-Section IV-1. We call 

the upper data set in Figure S21 data set A and the lower data set data set B. A piecewise 1st order 

linear model (“black box”) with 2 linear pieces and 7 parameters was fit using data set 1 with 

workload input and HR output and simulations of this model is done with the 2 workload as 

inputs. Then we fit and simulate different models with different complexities on the two data sets 

to study how validation results correlate with model complexities which is shown in Fig. S25-26.  
 

Validation 

Training 

Figure S25: Validation results for the nonlinear system  identification  model. HR (left axis, 
red) is plotted for two different workload demands (right axis, blue). We use the upper data set 
(called as data set A) in Fig. S21 as training data and the lower data set (called as data set B) as 
validation data. A piecewise 1st order linear model (“black box”) with 2 linear pieces and 7 
parameters was fit using the training data with workload input and HR output. Simulations of this 
model with the 2 workload inputs are in black.  
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Figure S26: In this figure, we use the two experiments’ data in Fig. S21 to show how validation 
results correlate with the complexity of the model. We call the upper experiment data set in 
Fig.S21 as data set A and  the lower one as data set B. The classes of models we compare in the 
figure are: 1 piece linear static model (blue), 1st order piecewise linear models with 1 piece 
(orange), 2 pieces (red), 3 pieces (green), and 4 pieces (purple). For each class of models, we do 
three different fittings: using data set 1 to fit a model; using data set 2 to fit a model; using both 
data set 1 and data 2 fit a model. Then we use those models to simulate the two data sets and 
calculate the corresponding mean squared errors on those data sets. The mean squared error is 
defined as:                                           

 
 
where h(t) and HR(t) are respectively the simulated and the measured heart at time point t, and N 
is the total number of time points. The three markers in each line for each class of models show 
the simulated errors using the corresponding three different fitted models, which are, from left to 
right, the fitted model using data set 1, the fitted model using the two data sets; the fitted model 
using data set 2.  From this plot, we claim that 2 linear pieces are an optimal balance between 
model order, fit, and cross validation.  
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V. Tables S1-S3: 

Table S1: Parameters value 

Parameter Value Parameter Value Parameter Value 
 0.01016(L/mmHg)  0.5(mmHg min/L)  6.0 (L) 

 0.6500(L/mmHg)  6.5(mmHg min/L)  0.2 (L O2/L blood) 
 0.0361(L/mmHg)  18(mmHg min /L)  0.012(L/min/watt) 
 0.1408(L/mmHg)  5.0580 (L)  0.36 (L/min) 

 

Table S2: Parameters value for cardio output 

Subject Parameter Value Parameter Value 
1 

 0.03(L/mmHg)  0.05(L/mmHg) 
2 

 0.025(L/mmHg)  0.045(L/mmHg) 
3 

 0.02(L/mmHg)  0.04(L/mmHg) 
4 

 0.032 (L/mmHg)  0.052(L/mmHg) 
5 

 0.03 (L/mmHg)  0.05(L/mmHg) 
                                           

Table S3: q value for dynamic 1st principle model 

Subject  Parameter Value Parameter Value Parameter Value 
1 0-50 

watts 
 30  100000  1 

100-
150watts  65  100000  15 

2 0-50 
watts 

 30  100000  1 

100-
150watts  80  100000  35 

3 0-50 
watts 

 40  100000  5 

50-
100watts  65  100000  15 

4 0-50 
watts 

 45  100000  1 

100-
150watts  85  100000  50 

5 0-50 
watts 

 40  100000  1 

100-
150watts  80  100000  40 
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VII: System Identification Techniques

1 Parametric Dynamical Model

A discrete linear time invariant (LTI) system with single input single output (SISO) is applied to approximate

causal dependencies between various physiological variables in our study. This LTI system is parameterized in the

following obervable canonical form:

∆x[k] , x[k + 1]− x[k] = Ax[k] +Bu[k] + [0, . . . , 0, 1]T c

y[k] = [1, 0, . . . , 0]x[k] k = 0, 1, 2, ...
(SI-18)

where A is parameterized as

A =



a1 1 0 0 · · · 0

a2 0 1 0 · · · 0

...
...

...
...

. . .
...

an 0 0 0 · · · 0


.

x[k] ∈ Rn,u[k] ∈ R and y[k] ∈ R denote the state, input and output of the system, respectively. The unknowns of

the system are A ∈ Rn×n, B ∈ Rn, c ∈ R and x[0] ∈ Rn, the initial condition. Given a positive discrete time instant

N and two sequences of scalar data from measured physiological variables, û := {û[k]}N−1
k=0 and ŷ := {ŷ[k]}N−1

k=0 , we

estimate the unknowns of the system (A,B, c, x[0]) so that when û is applied as input to the system, the resulting

output, y, is close to ŷ.

The advantage of using observable canonical form is that it reduces unknown parameter dimension and thus re-

duces computational complexity without loss of generality. Moreover, we have observed that this form is empirically

more accurate at fitting stiff systems than other state-space techniques.

2 Parameter Estimation

Denote Ec = [0, . . . , 0, 1]T and Er = [1, 0, . . . , 0]. Using the parameterization given above, the solution to (SI-18)

for a given input signal û is

y[k] = ErA
k−1x[0] +

k−1∑
i=1

ErA
k−1−iBu(i) +

k−1∑
i=1

ErA
k−1−iEcc
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for k = 0, 1, 2, . . . , N − 1. The parameter estimation problem can then be stated as follows. For fixed n, we wish to

find A,B, c and x[0] that minimize the mean squared error between y and ŷ, i.e. we wish to minimize

V (A,B, c, x[0]) =
1

N

N−1∑
k=0

1

2
[ŷ[k]− y[k]]

2
.

Letting ϕA[k] =

[
ErA

k−1
∑k−1
i=1 u(i)ErA

k−1−i ∑k−1
i=1 ErA

k−1−iEc

]
and ξ =

[
x[0]T BT c

]T
, the so-

lution to (SI-18) can be rewritten as y[k] = ϕTA[k]ξ, and the quadratic cost criterion becomes

V (A, ξ) =
1

N

N−1∑
k=0

1

2

[
ŷ[k]− ϕTA[k]ξ

]2
.

From this it is clear that if ϕA[k] is known for k = 0, . . . , N − 1, minimizing V with respect to ξ is a linear least-

squares problem that has a unique global minimum and can be solved efficiently. Since ϕA only depends on A, for

fixed A, ϕA[k] can be computed for k = 0, . . . , N−1. Thus, our approach to the parameter estimation problem is to

employ a direct search over the space parameterizing A, wherein the cost associated with a point A0 is min
ξ
V (A0, ξ).

Since A is parameterized in observable canonical form, the direct search occurs over an n-dimensional space. Letting

Ŷ =

[
ŷ[0] ŷ[1] · · · ŷ[N − 1]

]T
and ΦA =

[
ϕA[0] ϕA[1] · · · ϕA[N − 1]

]T
we have that, for fixed A,

(
ΦTAΦA

)−1
ΦTAŶ = arg min

ξ
V (A, ξ). (SI-19)

Thus, the cost criterion used in the direct search for A can be written as

V (A) =
1

N

N−1∑
k=0

1

2

[
ŷ[k]− ϕTA[k]

(
ΦTAΦA

)−1
ΦTAŶ

]2
.

We use the Nelder-Mead simplex algorithm as our direct search method for estimating A. This is a nonlin-

ear unconstrained optimization algorithm that attempts to minimize scalar-valued nonlinear functions using only

function values, i.e. without gradient information. Because the objective V (A) is nonconvex, we cannot guarantee

that our estimate for A is globally optimal. Nonetheless, A is parametrized by relatively few variables, and our

direct search is thus restricted to a low-dimensional space. We therefore expect that our method of eliminating

parameters (B, c, x[0]) and then searching only for A provides a more optimal estimate than would be obtained via

a joint optimization over (A,B, c, x[0]). Though the Nelder-Mead algorithm is not guaranteed to find the globally

optimal A, we observe in practice that this direct search is insensitive to our initial search point. We suspect this is

because we focus on 1st and 2nd oder LTI models, and the search space for A is consequently very low dimensional.
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