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CDS 202 Winter 2009 Solution Set 3
Problem 1 (MTA 2.3-3) (PS 2008)

(i) Using the comparison test and the fact that ‖An‖ ≤ ‖A‖n, it is clear
that

∑∞
n=0

An

n!
converges absolutely, and so converges. Since∥∥∥∥∥

N∑
n=0

An

n!

∥∥∥∥∥ ≤
N∑

n=0

‖A‖n

n!
≤ e‖A‖

it follows that ‖eA‖ ≤ e‖A‖.

(ii) Since A and B commute, we don’t have to worry about the ordering of
these operators in the series expansion of eA+B, and so this just reduces
to the usual proof that eA+B = eAeB. It follows that

eAe−A = eA+(−A) = e0 = I,

and so e−A = (eA)−1.

(iii) Expand eA+H out into monomials in A,H, and rearrange by grouping all
terms containing n H ′s together (there is no problem with rearranging
the terms since the series is absolutely convergent). Then

eA+H =
∞∑

n=0

ψn(A) ·Hn

where ψn(A) ∈ Ln
s (E,E) is defined by

ψn(A)·Hn =
∞∑

p=n

sum of all ordered monomials containing n H’s and p− n A’s

p!
,

(Note: it is enough to define ψn(A) ∈ Ln
s (E,E) on the diagonal Hn =

(H,H, . . . , H) by the results of Supplement 2.2B).

So for example,

ψ1(A) ·H = H +
HA+ AH

2!
+
HAA+ AHA+ AAH

3!
+ . . .

To show that ψn(A) is actually bounded, just note that

‖ψn(A) ·Hn‖ ≤
∞∑

p=n

(
p
n

)
‖H‖n‖A‖p−n

p!

=
‖H‖n

n!

∞∑
p=n

‖A‖p−n

(p− n)!

=
‖H‖n

n!
e‖A‖.
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This shows ψn(A) is bounded when considered as an element of Sn(E,E),
and hence as an element of Ln

s (E,E) (cf Supplement 2.2B). Using the
above bound, we get that

∞∑
n=0

‖ψn(A) ·Hn‖ ≤
∞∑

n=0

‖H‖n

n!
e‖A‖ = e‖A‖e‖H‖,

so the series for eA+H converges absolutely, hence converges, and e(·) is
analytic at any A, with derivatives

Dn exp(A) ·Hn = n! ψn(A) ·Hn.

(iv) From

eH = H +
H2

2!
+
H3

3!
+ . . .

it is clear that D exp(0) = I, which is invertible. The inverse function
theorem then guarantees the existence of a unique inverse in a neighbor-
hood of the origin.

(v) The series is absolutely convergent, hence convergent, for ‖I − A‖ < 1.
To show that it equals log:

Differentiate exp(logB) = B wrt B to get

D exp(logB) ◦D log(B) = IdE ⇒ D log(I) = [D exp(0)]−1 = IdE.

Differentiate again

D2 exp(logB)(D log(B)·H1, D log(B)·H2)+D exp(logB)(D2 log(B)·(H1, H2)) = 0

and evaluate at B = I, H1 = H2 = H to get

D2 log(I) · (H,H) = −D2 exp(0) · (H,H) = −H2,

and so on. The Taylor series for log about I is

log(I +H) = log(I) +D log(I) ·H +
1

2!
D2 log(I) · (H,H) + . . .

= 0 +H − H2

2
+ . . .

which is the same as the series given in the question.

(vi) Let X = logA, Y = logB. From the series expression for log it’s clear
that

AB = BA⇒ XY = Y X.
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From part (ii), we then have that

AB = eXeY = eX+Y = elog A+log B.

Taking the log of both sides (assuming log(AB) exists) we get that

logAB = logA+ logB.

Problem 2 (MTA 2.3-4) (PS 2008)

Let f : U ⊂ E → F be of class Cr, r ≥ 1, u0 ∈ U open, and suppose that
Df(u0) is a linear isomorphism. Define g : U × F → F by g(u, v) = f(u)− v.
Then g is easily seen to be Cr with nonsingular partial derivative D1g(u0, v0) =
Df(u0) : E → F for any v0 ∈ F. By the implicit function theorem, there exist
open nbhds V0 of v0, W0 of g(u0, v0), and a unique Cr function h : V0×W0 → U
with h(v0, g(u0, v0)) = u0 such that

g(h(v, w), v) = w ∀v ∈ V0, w ∈ W0.

In particular, take v0 = f(u0). Then W0 is a nbhd of 0 = g(u0, f(u0)), and so

h̃ : V0 → U, h̃(v) = h(v, 0),

is well defined, and Cr (since it is the restriction of a Cr function). So we have
that

g(h̃(v), v) = 0 ⇒ v = f(h̃(v)), ∀v ∈ V0.

The above equation implies that

h̃ : V0 → h̃(V0), f |h̃(V0) : h̃(V0) → V0,

are both 1-1 and onto, and inverses of one another. Hence f is a Cr dif-
feomorphism on the nbhd h̃(V0) of u0 . Moreover, the chain rule applied to
f(h̃(v)) = v implies that

Dh̃(v) =
[
Df(h̃(v))

]−1

,

for v in the nbhd V0 of v0 = f(u0).

Problem 3 (MTA 2.5-12)

Let F (an−1, · · · , a0, λ) = λn + an−1λ
n−1 + · · · + a0 be the characteristic

polynomial of an operator on Rn. This map is smooth because it is just a
polynomial in an−1, · · · , a0, λ. Now suppose that we fix an−1, · · · , a0 and let
λ0 (which depends on an−1, · · · , a0) be a simple eigenvalue, i.e.,

F (an−1, · · · , a0, λ) = (λ− λ0)G(an−1, · · · , a0, λ),
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where G(an−1, · · · , a0, λ0) 6= 0. Then

∂F

∂λ
(λ0) = G(an−1, · · · , a0, λ0) 6= 0.

Hence, using the implicit function theorem, we conclude that in a neighbor-
hood of λ0, there is a unique smooth map g(an−1, · · · , a0) such that

F (an−1, · · · , a0, g(an−1, · · · , a0)) = 0.

This means that the eigenvalue is a smooth function of an−1, · · · , a0. Since each
ai is a polynomial of elements of operator matrix, each is a smooth function
of the operator. From this we see that the eigenvalue is a smooth function of
the operator. So, we conclude that simple eigenvalues of operators on Rn are
smooth functions of the operator.

Problem 4 (MTA 3.5-1 (i), show that O(n) is a manifold of dimension
n(n− 1)/2) (PS 2009)

(i) Consider the determinant map det : L(Rn,Rn) → R. Then SL(n,R) =
det−1{1}. So if we can show that 1 is a regular value of det, it will follow
from the Submersion Theorem that SL(n,R) is a closed submanifold
of L(Rn,Rn) of dimension dim ker(TA det) = dimL(Rn,Rn) − dim R =
n2 − 1.

To find TA det, where A ∈ SL(n,R), note that

det(A+H)− det(A) = det(A)(det(I + A−1H)− 1)

= det(A)(trace(A−1H) + o(H))

= det(A)trace(A−1H) + o(H)

for any H ∈ L(Rn,Rn) so

TA det(H) = det(A)trace(A−1H) = trace(A−1H).

This map is clearly surjective onto R (e.g. at any A ∈ SL(n,R), take
H = c

n
A to get TA det(H) = c). Therefore 1 is a regular value of det.

For the complex case, the analysis is the same except that the (real)
dimension is

dimR ker(T det) = dimR L(Cn,Cn)− dimR C = 4n2 − 2.
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(ii) Define the map f : L(Rn,Rn) → Symm(n) by f(A) = ATA, where
Symm(n) denotes the (vector) space of symmetric n×n matrices. Then
O(n) = f−1(I). If we can show that I is a regular point of f , then
again using the Submersion Theorem it will follow that O(n) is a closed
submanifold of L(Rn,Rn) of dimension

dim kerTf = dimL(Rn,Rn)−dim Symm(n) = n2−n(n+1)/2 = n(n−1)/2.

To find TAf

f(A+H)− f(A) = ATA+ ATH +HTA+HTH − ATA

= ATH +HTA+ o(H)

so TAf(H) = ATH +HTA.

TAf is surjective at any A ∈ O(n) since e.g. if S ∈ Symm(n), then
TAf(1

2
AS) = S. So I is a regular value of f .

Problem 5 (Nawaf Bou-Rabee)

Solution (a) Suppose f and g are smooth. df and dg are injective since f
and g are immersions. Let f, g : Mf,g → Nf,g, consider a coordinate chart of
Mf ×Mg (ψf × ψg, Vf × Vg) and (ψf × ψg, Vf × Vg) of Nf ×Ng. Then,

d(f × g)p = d((ψ−1
f ◦ f̂ ◦ φf )× (ψ−1

g ◦ ĝ ◦ φg))p

= d(ψ−1
f ◦ f̂ ◦ φf )p × d(ψ−1

g ◦ ĝ ◦ φg)p

= (d(ψ−1
f ) ◦ d(f̂) ◦ d(φf ))p × (d(ψ−1

g ) ◦ d(ĝ) ◦ d(φg))p

= dfp × dgp

The steps follow by independence of g from f under the cross product (which
permits us to distribute the derivative) and the chain rule which we can use
since f and g are smooth. Thus, dw = d(f × g) = df × dg is injective since
dw = df × dg is simply a block diagonal matrix with df and dg along the
diagonals.

To show this we use a basic result from linear algebra: a linear transfor-
mation is injective if and only if its nullspace is trivial. Since df and dg are
the block-diagonal terms of dw, the kernel of dw is trivial if and only if the
nullspaces of df and dg are trivial,i.e., the zero element in the cross product
space is the only term that df and dg map to zero (since they are injective),
and hence, the zero element is the only term that dw maps to zero. Thus, dw
is injective.
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Solution (b) Since f and g are immersions, by the chain rule, the following
composition is a product of linear injections:

d(f ◦ g)p = d(ψ−1
f ◦ f̂ ◦ φf ) ◦ (ψ−1

g ◦ ĝ ◦ φg)p

= (dψ−1
f ◦ df̂ ◦ dφf )g(p) ◦ (dψ−1

g ◦ dĝ ◦ dφg)p

= dfg(p) ◦ dgp

which we will show is a linear injection. Since the composition is defined only
when the range of g equals the domain of f , the dimensions of the range of
dgp and domain of dfg(p) are the same. Thus, the fact that these are linear
injections implies a map of the form: dfg(p) ◦ dgp : Rk 7→ Rl 7→ Rm where l is
the dimension of the domain of dfg(p) and the range of dgp and k ≤ l ≤ m since
each step in the map is injective. Since the range of dgp is a subset of Rl, the
image of this vector subspace is a restriction of dfg(p) on a vector subspace. The
restriction of a linear injection on a vector subspace is still a linear injection
since distinct elements in the image of the subspace will correspond to distinct
elements within the subspace because the subspace is subset of the domain of
the injection. Thus, the composition is a linear injection.

Solution (c) The restriction of f to a submanifold of its domain is simply
the composition of f with the inclusion map γ defined in Problem 2 which
we showed is an immersion. Thus, f |U is a composition of f with γ which is
an immersion since by part (b) the composition of immersions is an immer-
sion. Equivalently, if df is injective then its restriction to any vector subspace
(defined by the restriction to a submanifold) is also injective.

Solution (d) If the dimensions of M and N are the same, dfp injective im-
plies dfp is onto. Since a matrix is invertible if and only if it is a bijective map,
dfp is invertible. By the inverse function theorem, f is a local diffeomorphism
at p.

Problem 6 (MTA 3.5-11) (PS 2009)

For any m ∈ f−1(n), Tmf is surjective and dimM = dimN <∞ together
imply that Tmf is bijective. By the Inverse Function Theorem f is a local dif-
feomorphism about m. So for each m ∈ f−1(n) there is an open nbhd Om of
m such that f |Om : Om → f(Om) is a diffeomorphism. Note that m is the only
element of f−1(n) contained in Om, since f must be injective when restricted
to Om. The collection {Om}m∈f−1(n) is an open cover of f−1(n). Since f is
continuous, f−1(n) is a closed subset of the compact space M , and hence is
itself compact. Therefore there exists a finite subcover {Om1 , Om2 , . . . , Omk

}
of f−1(n). Since each Omi

contains precisely one element of f−1(n), it follows
that f−1(n) is finite (it equals {m1,m2, . . . ,mk}).
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Since M is Hausdorff, by induction we can construct k mutually disjoint open
nbhds of the points m1,m2, . . . ,mk. Intersecting each such nbhd with the cor-
responding Omi

gives k open nbhds V1, V2, . . . , Vk of m1,m2, . . . ,mk such that
f |Vi

: Vi → f(Vi) is a diffeomorphism. Define the following sets

V =
k⋂

i=1

f(Vi)− f(M −
k⋃

i=1

Vi)

Ui = Vi ∩ f−1(V ) i = 1, 2, . . . , k.

We claim that these are the required sets from the question. First note that
V is open: M − ∪k

i=1Vi is closed in M , hence compact. f is continuous, so
f(M−∪k

i=1Vi) is a compact subset of the Hausdorff space N , hence it is closed.
Then V can be written

V =
k⋂

i=1

f(Vi)
⋂(

N − f(M −
k⋃

i=1

Vi)

)
.

This is a finite intersection of open sets, hence open.

It follows that the Ui are all open. We know that f is a local diffeomor-
phism on Vi, hence f |Ui

: Ui → V is a diffeomorphism, since Ui ⊂ Vi.

It only remains to prove that f−1(V ) = ∪k
i=1Ui. Clearly ∪k

i=1Ui ⊂ f−1(V ).
Suppose there exists a point x ∈ f−1(V )− ∪k

i=1Ui. Then

f(x) ∈ V, x 6∈ ∪k
i=1Ui

⇒f(x) 6∈ f(M − ∪k
i=1Vi), x 6∈ ∪k

i=1Ui

⇒x ∈ ∪k
i=1Vi, x 6∈ ∪k

i=1Ui

⇒x ∈ Vi − Ui some i, since the Vi are all disjoint.

Since F maps Vi diffeomorphically onto f(Vi) and Ui ⊂ Vi diffeomorphically
onto V , it follows that f(x) 6∈ V , which contradicts the above.

Now suppose the M is connected, and f is a submersion. For each k ∈ N,
define the set

Ak = {n ∈ N : f−1(n) has precisely k points}.

Clearly all of the Ak are disjoint, and f(M) =
⋃

k∈NAk. From the previous
result, for each point in Ak we can find an open nbhd of the point contained in
Ak. Hence Ak is open (in N and therefore in f(M)). Also Ak is closed in f(M)
since Ak = f(M) −

⋃
j∈N,j 6=k Aj. Since M is connected and f is continuous,

f(M) is connected. So the only possibilities are that Ak = f(M) or Ak = ∅.
So if one point of f(M) has an k-point inverse image, then every point does.


