
Distributed Estimation and Control

Vijay Gupta

May 9, 2006

Abstract

In this lecture, we will touch upon some of the open issues when such estimation has to be
carried out in a communication constrained network control environment. We will concentrate
on three constraints: topology, quantization issues and packets dropped by communication
channels. We will discuss the major research directions in these areas.
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Estimation and control in Networked Control Systems is, by and large, an open problem. There

are many effects that communication channels introduce. We will now consider some such effects
and state some research directions that are being pursued. For the purpose of estimation, we will
only be interested in variables that evolve in time.

1 Effect of Topology

1.1 Distributed Sensor Fusion

We saw that the so-called consensus protocol can be used to generate weighted averages in arbitrary
graphs and hence for static sensor fusion. Attempts have been made to apply similar ideas for
dynamic sensor fusion in networked control systems as well [15, 1]. To follow the method used, we
use the following result proved in the lecture on distributed estimation.

Proposition 1. Consider a random variable evolving in time as

x(k + 1) = Ax(k) + w(k).

Suppose it is observed through measurements of the form

y(k) = Cx(k) + v(k).
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Then the measurement updates of the Kalman filter can be given by this alternate information form.

P−1(k|k)x̂(k|k) = P−1(k|k − 1)x̂(k|k − 1) + CTR−1y(k)

P−1(k|k) = P−1(k|k − 1) + CTR−1C.

Suppose now that the measurement y(k) is obtained by stacking measurements yi(k) from
N sensors, with the i-th sensor having measurement matrix Ci and noise vi(k) with covariance
matrix Ri. Assume that the noises vi(k) are independent of each other, so that the matrix R is
block-diagonal. Thus we obtain

CTR−1y(k) =

N∑

i=1

CT
i R−1

i yi(k)

CTR−1C =
N∑

i=1

CT
i R−1

i Ci.

Thus note that calculating the global Kalman filter estimate essentially requires two quantities:
CT R−1C and CT R−1y which can be expressed as the sum over similar quantities from each sensor.
Since the consensus algorithm yields the average of quantities at many sensors, if every sensor
knows the total number N of the sensors present, it can calculate the sum and implement the
global Kalman filter.

Practically, the consensus algorithm only yields the average asymptotically hence if there are
n communication rounds allowed, the sum calculated is an approximation. Intuitively, the per-
formance loss is equivalent to premultiplication of the global Kalman filter by a low-pass filter
determined by the network topology and speed.

1.2 Topology Synthesis in Distributed Control

We saw that the problem of constructing a controller that respects the topology of the agents is a
hard problem. However, there is an implicit assumption in that problem that the interconnection
topology is known to the designer prior to the synthesis of the control law. This is equivalent
to assuming that the decentralization is an external constraint. In networked control, both the
communication network and the controller may be designed at the same time. So, for example,
when deciding between a leader-follower (star) topology and a string topology, the choice of the
information pattern is to be performed concurrently with the controller synthesis. Thus a more
fundamental question is to obtain an optimal topology. This question has been studied for long
in the realm of Team Decision theory (mainly for static variables) [16] but the distributed control
aspects have started getting attention only recently [17, 18].

In the setting of [18], consider N agents with the dynamics of the i-th agent being1

xi(k + 1) = Aixi(k) + Biui(k).

Let the vector xi(k) have dimension ni × 1 and u(k) have dimensions mi × 1. Also let the vector
x(k) formed by stacking the states of all the agents have dimension n =

∑N
i=1 ni and similarly u(k)

have dimension m =
∑N

i= mi. The interconnection topology is depicted by a graph with an edge

1[18] considers continuous time dynamics, but the arguments can be carried over to the discrete-time case.
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present between two vertices iff the corresponding agents can communicate. Any graph g can then
be used to impose a structure on a matrix K as follows. K is a structured m × n matrix that is
defined block-wise, with each block Kij being a mi × nj matrix such that Kij = 0 whenever i and
j do not share an edge. Thus if a control law is such that

u(k) = Kx(k),

then any control law ui(k) involves the values of xj(k) for only those j that are neighbors of i. If
u(k) is of this form, we say that u has structure g.

For such a system, we consider the quadratic cost

Jg(u) =

∞∑

k=0

[
xT (k)Q(g)x(k) + uT (k)u(k)

]
.

Note that the cost is a function of the graph g because both the matrix Q and the control law u

are functions of the graph. Note that if the cost matrix Q were independent of the topology, the
optimal topology would be a completely connected graph and the corresponding control law would
be the usual LQ control. There are many ways in which Q can depend on the graph.

1. The map Q can satisfy

Q = Q0 +
∑

all edges (i,j)

Pij ,

with each matrix Pij > 0 being partitioned according to the agents and having all blocks zero
except the (i, i)-th, (i, j)-th, (j, i)-th and (j, j)-th ones. So, every subsystem pays a price for
every edge it transmits its state on.

2. Q is given as above, but Pij has the same structure as Q. Thus every subsystem pays a price
for any edge added to the system.

3. There is no edge-by-edge separation in Q.

For a given weight matrix Q, we refer to the value of the cost function obtained by using the optimal
control law u that satisfies the topology of the graph g as J ?

g (Q).
If a graph g is a subgraph of another graph g ′ then we write g � g′. The following results are

obvious.

Proposition 2. 1. If g � g′ then for a fixed Q, J?
g′(Q) ≤ J?

g (Q).

2. If Q ≤ Q′ then for any graph g, J ?
g (Q) ≤ J?

g (Q′).

Comparing the values of costs for arbitrary topologies is difficult chiefly because finding the
optimal control law that satisfies a given topology is a difficult problem. For some special cases,
however, the problem yields simplifications.

Proposition 3. Consider a mapping of topologies into the weighting matrices Q such that for
any graph g, the matrix Q(g) has the same structure as the matrix K. Then if the graph g is a
clique graph then J?

g (Q) = xT (0)P (g)x(0), where P (g) is the unique positive definite solution to the
Riccati equation

P (g) = AT P (g)A + Q − AT P (g)B
(
BT P (g)B + R

)−1
BTP (g)A.
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A clique graph is one each of whose connected components is a complete subgraph. Thus for
such a graph, if the weighting matrix follows the assumption stated above, then the system can
simply be treated as a collection of subsystems with each subsystem corresponding to a sub-graph.
The problem is totally decoupled and the resulting LQ optimal control law automatically satisfies
the structure imposed by the topology. Thus the cost function stated in the proposition results.

If in addition the mapping is such that a graph g being a sub-graph of another graph g ′ implies
Q(g) ≤ Q(g′), then it is possible to compare the optimal cost obtained by a clique graph to its
supergraphs.

Proposition 4. If the mapping of topologies into weighting matrices satisfies the assumptions
stated above, and g be a clique graph, then J ?

g (Q(g)) ≤ J?
g′(Q(g′)) whenever g � g′.

Proof. Proof follows by a straight-forward set of inequalities. First we note that J ?
g (Q(g)) ≤

J?
g′(Q(g)) since g is a clique graph and hence the optimal LQ control law has structure imposed by

the graph g. But J?
g′(Q(g)) ≤ J?

g′(Q(g′)) since Q(g) ≤ Q(g′). Combining the inequalities yields the
desired result.

An immediate consequence of the result is that if the mapping satisfies the assumptions stated
above, the fully decentralized graph is the most efficient graph.

The above result does not enable us to compare two arbitrary topologies. In [18] the authors
provide some LMI conditions to find out the critical price at which adding an edge to a given
topology becomes detrimental. However the LMIs assume that the control law is fixed (say a
consensus type law, e.g.). If the LMIs have to be solved both for the control law and the price,
they turn into bilinear matrix inequalities that are NP-hard to solve in general.

Thus the problem of synthesizing the optimal topology has only been solved in some specific
cases. The general problem remains open. It is of interest in many networked control systems to
obtain the best possible topology in which to connect the different agents. Solving the topology
synthesis question will also shed light on this problem.

2 Effect of Quantization

In last week’s lectures, the following result was proven.

Proposition 5. (See, e.g., [2, 3, 4]) Consider a system of the form

x(k + 1) = Ax(k) + w(k)

being observed by a single sensor of the form

y(k) = Cx(k) + v(k).

If (A,C) is observable, then a necessary condition for asymptotic observability over a noiseless
digital channel is that the rate2 R satisfies

R ≥
∑

λ(A)

max{0, log | λ(A) |}.

2This is unfortunate notation since earlier R was being used for a covariance matrix and now for the rate vector.
The context hopefully makes the meaning clear.
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A sufficient condition is that

R >
∑

λ(A)

max{0, log | λ(A) |}.

For a system being observed by two sensors with observation matrices C1 and C2, a similar
result holds. Define Nn to be the unobservable subspace associated with (A,Cn) and On to be the
subspace orthogonal to Nn

3. Assume that ∩N
n=1Nn = φ. Thus any x ∈ On can be observed by

encoder n.
Associate with each n the set

Λn = {λ(A) : those eigenvalues of A that correspond to the subspace On}.

Thus every eigenvalue of A is in at least one such set. Since the eigenvalue may be in multiple
sets, encoders can jointly transmit information about it. This freedom is captured in the following
result. For the n-th sensor, define its rate vector to be

Rn =
(
Rn,1, Rn,2, · · · , Rn,dim(On)

)
.

Proposition 6. (From [5]) A necessary and sufficient condition on the rate for asymptotic observ-
ability is that the vector of rates used by all the sensors lies in the region R defined by

R = {(R1, · · · , RN ) :
∑

n:λ(A)∈Λn

Rn,jλ(A)
≥ max{0, log | λ(A) |},∀λ(A)}

where jλ(A) represents the index of the rate vector associated with that eigenvalue.

Proof. Proof is straightforward. For any eigenvalue that only one sensor observes, the rate from
that sensor should be enough to guarantee observability of that subspace. If multiple sensors
observe some eigenvalue, then the rate required for that subspace can be split among them.

This result solves the problem of one source and multiple sensors for digital noiseless channels.
The result can be extended when the channels are replaced by networks of digital noiseless channels.
The quantity of interest then becomes the min-cut capacity of the network. The problem for
multiple sources can be solved using the above results if we simply stack the states on top of one
another. Above results were for the case of a noiseless system. When noise is present, the situation
is much less well-understood [6]. Similarly the control performance of the system in presence of
quantization is largely an open problem.

3 Effect of Packet Drops

This has also become a region of active research lately. Results that are known are limited in
nature. There are two main directions of research:

3As an interesting exercise, prove that Nn is indeed a subspace.
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3.1 Measurements being Transmitted

It may be assumed a priori that the quantity to be transmitted is the measurement. This case
was considered for the single sensor-estimator case in the class a couple of weeks ago by Bruno.
Essentially the average error covariance for i.i.d. packet drops is characterized through an upper and
a lower bound [7]. These provide sufficient and necessary conditions for convergence. That result
has been extended in two directions. For the case of multiple sensors observing the same process
which can all drop measurements independently of each other, the situation is again described by
a rate region [8]. The analysis is very similar to the single sensor case and is left as an exercise.

If multiple sensors observe the same process such that some sensors may never drop measure-
ments, the analysis (especially of the lower bound) becomes slightly more involved. However this
case has also been analyzed [9]. This approach can also extend the upper and lower bounds for the
average error covariance for the case when packet drops are not i.i.d. Let us look into this analysis
in a little more detail.

Consider a system of the form

x(k + 1) = Ax(k) + w(k)

that is observed at every time step by one among N different sensors

yi(k) = Cix(k) + vi(k).

Let the noises w(k) and vi(k) be zero mean, white, Gaussian, independent of each other and with
variances Q and Ri respectively. Suppose sensor i is chosen with probability qi at every time step.
The following questions may be asked.

1. What is the performance of the optimal estimator?

2. What is the optimal schedule for choosing the various sensors?

It is obvious that the optimal estimator is a Kalman filter. For ease of notation, we denote the
Riccati operator

fi(P ) = APAT + Q − APCT
i

(
CiPCT

i + Ri

)−1
CiPAT .

Thus fi(P ) denotes the estimate error covariance at time step k + 1 is the i-th sensor was used at
that time and the covariance at time step k was P . It is obvious that the error covariance P (k)
evolves in a stochastic fashion. To characterize it, we look at its expected value. The following
properties of the Riccati operator are easy to prove.

Proposition 7. 1. For a positive semi-definite P , fi(P ) is concave in P .

2. For two positive semi-definite matrices X and Y , if X < Y , then fi(X) < fi(Y ).

3. For any positive semi-definite matrix X, fi(X) ≥ Q.

Explicit calculation of the expected error covariance seems hard. We look instead for upper and
lower bounds.

The upper bound is obtained by using the concavity of the Riccati operator.
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Proposition 8. For the problem set-up given above, if the sensors are chosen i.i.d., then the
expected error covariance of the estimate at time step k + 1 is upper-bounded by ∆(k + 1) where

∆(k + 1) = Q + A∆(k)AT −
N∑

i=1

qiA∆(k)CT
i

(
Ci∆(k)CT

i + Ri

)−1
Ci∆(k)AT ,

with the initial condition ∆(0) = P (0), the covariance of x(0).

Proof. Proof is simple. First note that P (k) and C(k) (the sensor chosen at time step k) are
independent. Thus we can explicitly take expectation w.r.t. C(k) to obtain

E [P (k + 1)] =

N∑

i=1

qiE [fi (P (k))] ,

where the expectation on the right hand side is now only over C(0), · · · , C(k − 1). Now owing
to the concavity of the Riccati operator, we can use Jensen’s inequality on the right hand side to
obtain

E [P (k + 1)] =
N∑

i=1

qiE [fi (P (k))]

≤
N∑

i=1

qifi (E [P (k)]) .

Since the Riccati operator is an increasing operator, the upper bound is immediate.

The convergence of the recursion for the upper bound is also considered in [9]. The lower
bound can be obtained in multiple ways. We present the method in [9]. Define the repeated
Riccati recursion operator as

fk
i (P ) = fi (fi (· · · (fi(P ))))

︸ ︷︷ ︸

fi(.) applied k times

.

Proposition 9. For the problem setup given above, if the sensors are chosen in an i.i.d. fashion,
then the expected error covariance at time step k is lower bounded by X(k) where

X(k) = qk
j fk

j (P (0)) +
k−1∑

i=1

qi
j

(

1 − qk−i−1
j

)

f i
j(Q).

One such lower bound results for each j =, 1, 2, · · · , N . Further, the lower bound diverges (hence
a sufficient condition for the divergence of the expected error covariance) is

qj | λmax

(
Āj

)
|2≤ 1,

where λmax

(
Āj

)
is the eigenvalue with the maximum magnitude of the unobservable part of A when

the pair (A,Cj) is put in the observer canonical form.
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Proof. The event space for the sensor schedule till time step k − 1 (which determines the value of
P (k)) can be partitioned into k+1 disjoint events Ei of the form: sensor j was chosen consecutively
for the last i time steps and in the time step just before that, j was not chosen, 0 ≤ i ≤ k. Thus
the expected error covariance is given by

E [P (k)] =
k∑

i=0

p(Ei)V (Ei) ,

where p(Ei) refers to the probability of Ei occurring and V (Ei) refers to the value of error covariance
under the event Ei. Now consider the i-th term in the summation, where i < k. Note that

1. When the sensor j is chosen at time step m, the error covariance at the time step m + 1 is
given by fj(Σ) where Σ was the error covariance at the present time step.

2. When any other sensor is chosen the corresponding error covariance at time step m + 1 is
lower bounded by Q. Moreover if, then, at time step m + 1, the j-th sensor is chosen, the
error covariance at time step m + 2 is lower bounded by fj(Q).

By combining these two facts, we see that

V (Ei) ≥ f i
j (Q) .

Thus we obtain
p(Ei)V (Ei) ≥ qi

j

(

1 − qk−1−i
j

)

f i
j (Q) .

For the term Ek, from the definition we obtain

p(Ek)V (Ek) = qk
j fk

j (P (0)).

By adding together the terms p(Ei)V (Ei), we obtain the lower bound.
The proof for the divergence condition is given in [9] and is omitted here.

Similar bounds can be obtained [9] when the sensors are chosen in a Markovian fashion. If
one of the sensors corresponds to measurements being dropped, these bounds and conditions for
divergence reduce to the ones that were presented by Bruno. These conditions can also be used
to construct an optimal schedule for choosing sensors. Obviously the optimal schedule can only be
obtained using a tree search but optimizing the expected error covariance over the probabilities of
choosing various sensors can yield a stochastic schedule that performs well on an average.

3.2 Optimal Encoding for Estimation

A more general approach is to find coding strategies, that is find the optimal quantities to be
transmitted by each sensor so that the estimator can obtain the optimal estimate (given that packets
are being dropped). It is obvious that the problem of estimation (and control) in a Networked
system is partly that of information transmission. While the usual setting in information theory
that deals with the questions of information transmission is insensitive to questions of delay, the
general idea of encoding information before transmission over a communication channel is relevant
to estimation and control. We saw some strategies that dealt with digital noiseless channels in
the last section when we considered quantization strategies that achieved the minimum bit-rate
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for stability and also when we considered distributed estimation to reduce the computation at a
central node when the agents were connected by a given topology. In this section, we will look at
encoding strategies with respect to channels that drop packets.

Let us begin with the simplest case: there is one sensor present that transmits over a single
packet dropping channel to an estimator. If the sensor transmits measurements, the performance
has been looked at in [7]. The optimal encoding and decoding for this case has been looked at
in [12]. Consider a system of the form

x(k + 1) = Ax(k) + Bu(k) + w(k)

being observed by a sensor of the form

y(k) = Cx(k) + v(k),

with the usual assumptions on the noises. The sensor transmits its information to the controller over
a channel that drops packets. We assume that the packets have enough bits so that quantization
error is not an issue. For this system consider the usual quadratic cost

J = E

[
K∑

k=0

(
uT (k)Qcu(k) + xT (k)Rcx(k)

)
+ xT (k + 1)P (k + 1)x(k + 1)

]

.

We wish to minimize this cost function over the choice of the controller, the encoding done at the
sensor and the decoding done at the controller. The following result holds.

Proposition 10. For the single sensor, estimator and channel setting considered above, an optimal
solution is the following:

• The encoder is a Kalman filter that calculates the estimate x̂(k|k) of the state x(k) at every
time step.

• The decoder is a switched linear filter. If it receives a packet from the encoder, it outputs that
as the current estimate. Otherwise it time updates the last estimate it calculated and outputs
that.

• The controller is the LQ optimal controller. It uses the estimate that the decoder outputs
instead of the state value.

Proof. The details of the proof are in [12]. Essentially the proof follows the following steps.

1. The best performance is achievable if the encoder transmits the entire measurement history
at every time step k. That is the maximum information set that the controller can possibly
have access to and hence the performance is the best in this case.

2. For such an encoder, a separation principle holds. The decoder calculates the minimum mean
squared estimate of the state x(k). The controller uses that estimate in the LQ optimal
control.

3. Thus the same performance is achievable as long as the controller has access to the state
estimate. The encoder and decoder presented in the result ensure this.
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Note that the encoder and decoder alone solve the optimal estimation problem. Also note that
the solution given above is optimal for any packet-dropping process (not necessarily i.i.d.). Moreover
the solution is optimal even though the encoder and the decoder have a recursive structure, and
hence require a constant amount of memory and computation. Another nice feature of the solution
is that as soon as the decoder receives any packet from the encoder, its estimate is as good as if it
had received all previous packets. Hence previous packets do not matter anywhere.

In the version presented above, the encoder needed to know the control input. Since the Kalman
filter is linear, the effect of the control input can also be taken care of at the decoder (which is
collocated with the controller and hence knows the control input). For other properties of the
algorithm, including optimality in the presence of delays, see [12].

Paradoxically, it turns out that the optimal strategy presented above is much easier to analyze
then transmitting measurements alone. We can, for instance, calculate the expected error covari-
ance. Stability and performance results for specific packet drop models are given in [12]. As an
illustration, the following result holds for channels that drop packets in a Markovian fashion.

Proposition 11. Consider the control problem defined above. Let the pair (A,B) be stabilizable
and (A,C) be detectable. Then the system is stabilizable in the bounded variance sense if and only
if

q22 | ρ(A) |2< 1,

where q22 is the probability of dropping two packets consecutively and ρ(A) is the spectral radius of
A.

Since the strategy is optimal, this condition is necessary for any other encoding strategy. Further
if the condition is satisfied, one scheme that stabilizes the system (or in case of estimation yields
the optimal estimate) is presented above.

Assuming a provision of time-stamping, the strategy can be extended to the case of estimation
and control over networks composed of packet erasing channels as well [10, 11]. The strategy
remains similar. The optimal encoder is a Kalman filter. At every time step, any intermediate
node considers the packets on all incoming edges and the packet in its own memory from the last
time step. It looks at the time stamp of the packets, chooses the packet with the latest measurement,
time updates it and transmits it on all out-going edges. This simple algorithm can be shown to be
optimal. All the nice properties carry over from the single channel case. Stability and performance
of the system can be analyzed. As an illustration the following result holds for stability.

Proposition 12. Consider a process being estimated over a network of channels that drop packets
independent of each other as well as in an i.i.d. fashion in time. Let the j-th channel have packet
drop probability γj. Then the expected estimate error covariance is stable if and only if

pmax-cut | ρ(A) |2< 1,

where pmax-cut is the max-cut capacity of the network. To calculate the max-cut capacity, form all
possible cut-sets of the network such that the sensor is in the source set and the estimator in the
sink set. For any cut-set, define the cut-set capacity as

pcut-set =

p
∏

i=1

γi,
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where the product is taken over all the p edges that join a node in the source set to a node in the
sink set. Then the max-cut capacity is given by

pmax-cut = max
all possible cut-sets

pcut-set.

Thus the cut-set probability is the equivalent probability for stability purposes for any network.
As an example, consider a series network of n links each with probability of erasure p. Then
the equivalent drop probability using the optimal coding strategy is p. As a comparison, the
equivalent probability if only measurements were transmitted and no encoding was done would be
the reliability of the network which is 1 − (1 − p)n. For n = 5 and p = 0.2, this evaluates to a
difference between 0.2 and 0.7. Thus there are huge gains to be had by encoding. It may also
be noted that the cut-set probability is equivalent only for stability purposes and the performance
calculation is harder.

The performance results, e.g., can be used for the purpose of synthesizing a network. To consider
a simple example, consider a scalar system observed by sensor s. Assume that the destination is
located at distance d0 from the sensor. The probability of dropping a packet on a link depends on
its physical length. A reasonable model for probability of dropping packets is given by4

p(d) = 1 − exp(−βdα),

where β, α are positive constants. α denotes the exponent of power decay in the wireless environ-
ment. We can easily calculate the optimal number n of relay nodes that we should place between
sensor and the destination so as to minimize the expected steady-state error covariance.

For the case of multiple sensors, the optimal encoding and decoding has been identified for the
case when only one sensor has a channel that drops packets [13, 14]. The problem is largely open
for multiple packet dropping channels.
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