CALIFORNIA INSTITUTE OF TECHNOLOGY BioEngineering

BE 150

M. Elowitz and R. M. Murray	Problem Set #8	Issued:	5 Mar 12
Winter 2012		Due:	$14~{\rm Mar}$ 12

1. Pattern formation by lateral inhibition. Based on Collier et al., Journal of theoretical biology, 1996

The Notch-Delta signaling pathway allows communication between neighboring cells during development. It has a critical role in the formation of 'fine-grained' patterns, generating distinct cell fates among groups of initially equivalent neighboring cells and sharply delineating neighboring regions in developing tissues. In this problem, we investigate the pattern-forming potential and temporal behavior of the Collier model through numerical simulation.

The dynamics of Notch (n_p) and Delta (d_p) for each individual cell p are governed by:

$$\dot{n_p} = f(\bar{d_p}) - n_p$$
$$\dot{d_p} = \nu(g(n_p) - d_p)$$

where \bar{d}_p denotes the mean of the levels of Delta activity in the cells adjacent to cell p, and

$$f(x) = \frac{x^k}{a + x^k}, g(x) = \frac{1}{1 + bx^h}$$

Consider a two dimensional array of cells, where each cell is modeled by a square. The parameters for the simulation are $a = 0.01, b = 100, \nu = 1, k = h = 2$. Simulate Notch-Delta dynamics for a 15×15 array of cells, using initial conditions chosen randomly from a uniform distribution. Use the code provided in in *NotchDeltaGui.m* to provide a visualization of your simulation. Color cells with high Notch activity (if Notch activity is ≥ 0.995) in red, and low Notch activity level in black. Provide an illustration of the steady state of your simulation.

2. Scaling of morphogen gradients. Based on Ben-Zvi, Barkai, PNAS, 2010

Consider the feedback "expansion-repression" model for morphogen gradient scaling in which the range of the morphogen gradient, [M] increases with the abundance of some diffusible molecule [E], whose production, in turn, is repressed by morphogen signaling. The partial differential equations

$$\frac{d[M]}{dt} = D_M \nabla^2[M] - (1 + [E])^{-1_1} \alpha_M^1[M] - (1 + [E])^{-1} \alpha_M^2[M]^2$$
$$\frac{d[E]}{dt} = D_E \nabla^2[E] - \alpha_E^1[E] + \beta_E \frac{1}{1 + ([M]/T_{rep})^h}$$

and boundary conditions:

$$D_M \nabla [M]_{x=0} = -\eta_M$$
$$D_M \nabla [M]_{x=L} = 0$$
$$D_E \nabla [E]_{x=0} = 0$$
$$D_E \nabla [E]_{x=L} = 0$$

represent the dynamics of morphogen/expander concentrations with respect to position and time.

a) Implement the system above using the technique discussed in class. Use the parameters below in addition to L = 15 grid points, h = 4, cell size 100 μm and time at steady state 5×10^5 sec.

Morphogen diffusion, D _M	10 µm ² ·sec ⁻¹
E diffusion, DE	10 ⁻¹ µm ² ·sec ⁻¹
Morphogen linear degradation rate, am ¹	10 ⁻⁵ sec ⁻¹
Morphogen quadratic degradation rate, α_M^2	1 µM ⁻¹ -sec ⁻¹
E degradation rate, α_E	10 ⁻⁴ sec ⁻¹
Morphogen flux from proximal pole, n _M	1 µm·µM·sec ⁻¹
E production rate, β_E	10-3 µM-sec-1
Threshold for E repression, Trep	10 ⁻³ µM

Figure 1: Parameters for problem 4

- b) Plot the dynamics of the expansion-repression mechanism at three different times: when the morphogen gradient is sharp, when the gradient expands, and at steady state, along with the threshold. Explain the dynamics of the system in the three situations.
- c) Consider two examples of morphogen gradients defined by the expansion-repression topology for a field of length L: one that does not scale, and one that does scale with respect to the steady state morphogen gradient from part a). Plot each example separately on a scale of relative length x/L, where x is the position vs. morphogen concentration in μM . (Hint: try changing L and/or the cell size).
- d) What is the condition on the diffusion of the expander allows for scaling of the gradient?