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Lattice percolation problem

Question
Is there a connected path from
the top of the lattice to the
bottom through empty sites (a
“crash”)?

proper model of a variety of physical systems
simple, intuitive and easy to visualize
polynomial time solvable, yet helps develop insights and theory
for hard problems; helps understand ‘which instances are hard’
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Lattice percolation

Vertical path of empties (whites)
Connect corners or edges
8 neighbors

Horizontal (black) paths
Connect only on edges
4 neighbors

Assumption: neighborhood rule
Data: site colorings



Lattice percolation Phase transition Complexity and fragility in lattices Lattice as LP (linear program)

Dual rules

an intuitive notion of duality (details later):

←→

dual←→

{vertical path} = ∅ ⇐⇒ {horizontal path} 6= ∅.
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Paths as proofs

How to prove that “crash” can (cannot) happen?

Crash can happen, as this
example shows

Crash cannot happen as this
horizontal path proves
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Path length

When the path is long,
finding it tends to be hard (you as the“computer”)
describing it is hard
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Path length

When the path is long,
finding it tends to be hard (you as the“computer”)
describing it is hard

Intuition
Path length can represent proof complexity. . .
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Phase transition

ρ = 0.59

Phase transition
considers random lattices
is thought to be linked with complex cases, where paths are long
but long proof and critical density do no always happen together.
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Phase transition

ρ = 0.4 ρ = 0.6 ρ = 0.8

Phase transition
considers random lattices
is thought to be linked with complex cases, where paths are long
but long proof and critical density do no always happen together.
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Phase transition

ρ = 0.61 ρ = 0.31

Phase transition
considers random lattices
is thought to be linked with complex cases, where paths are long
but long proof and critical density do no always happen together.
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Phase transition

ρ = 0.61 ρ = 0.31

Phase transition
considers random lattices
is thought to be linked with complex cases, where paths are long
but long proof and critical density do no always happen together.
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What is fragility

Robustness?
what is the smallest change in problem data to change the answer?

small big
minimum # of sites needed to change
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Complexity and fragility

Definitions

ρ =density of occupied sites; n =size of lattice;

` =length of shortest path; C =
`

n
;

b =number of independent paths; F =
ρn
b

.

Conjecture

C ≤ F
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Complexity and fragility

Conjecture

C ≤ F

Simple proof:

`b ≤ ρn2 ⇒ `
n ≤

ρn
b ⇒ C ≤ F .

we can build lattices that show the bound is tight.
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2D vs higher dimensions

2D lattices are special:
primal and dual problems are essentially the same
dual of paths are paths
there is no duality gap

in higher dimensions, e.g., 3: dual of a path is a surface
in general, barrier that stops a 1D path in an n-D lattice is n − 1
dimensional
neighborhood rules generalize
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Complexity and fragility
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Lattice as LP
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Flow model for lattice
write flow conservation for all nodes,
e.g., node 5:

−f15 − f65 + f51 + f56 − fin = 0

to check if path exists: find f such that

Af = b, f � 0,

f = vector of all flows fij ,
A = incidence matrix,
b = source/destination flows
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Farkas’ Lemma

Farkas’ lemma
The following two systems

Ax � 0, cT x < 0 and AT y + c = 0, y � 0

where A ∈ Rm×n and c ∈ Rn, are strong alternatives; i.e., one and
only one is true.

Applying Farkas’ lemma to Af = b, f � 0 gives alternative (dual)
LP:

AT ν � 0, bT ν < 0.
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Dual variables and barrier

Interpretation of dual variables ν

alternative problem:
AT ν � 0, bT ν < 0.

reduces to:

νi − νj ≥ 0 if i → j ,
νD − νS < 0,

for all nodes (except S, D) flows are
bi-directional, yielding equal ν for all
connected nodes.
νs can be used to indicate
disconnected clusters.
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Dual variables and barrier

S D

Interpretation of dual variables ν

alternative problem:
AT ν � 0, bT ν < 0.

reduces to:

νi − νj ≥ 0 if i → j ,
νD − νS < 0,

for all nodes (except S, D) flows are
bi-directional, yielding equal ν for all
connected nodes.
νs can be used to indicate
disconnected clusters.
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Dual variables and barrier

Idea: tracing the break

finding ν is ‘equivalent’ to finding a vertical path with 8-neighbor rule
in the dual lattice.
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Lattice duality can be viewed as a special case of LP duality.
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Shortest path

Finding shortest path

minimize (# of non-zero fij)
subject to Af = b,

f � 0.

due to special property of A, b (total unimodularity), reduces to

minimize
∑

ij fij
subject to Af = b,

f � 0.
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Shortest path

Solving LP directly is not an
efficient way to check for
shortest path. Breadth-first
search is better.
BFS runtime related to
shortest path length
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Summary

lattices (visually) illustrate key issues of duality and complexity
random cases well-studied, e.g., phase transition
lattice duality is a special case of LP duality

do the insights extend to general LPs?

Complexity implies Fragility
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