

CDS 140a Winter 2014 Homework 5

From MurrayWiki

R. Murray, D. MacMartin

ACM 101b/AM 125b/CDS 140a, Winter 2014

Issued: 4 Feb 2013 (Tue)

Due: 12 Feb 2013 (Wed) @ noon

Note: In the upper left hand corner of the *second* page of your homework set, please put the number of hours that you spent on this homework set (including reading).

1. **Perko, Section 2.9, problem 3** Use the Lyapunov function $V(x) = x_1^2 + x_2^2 + x_3^2$ to show that the origin is an asymptotically stable equilibrium point of the system

$$\dot{x} = \begin{bmatrix} -x_2 - x_1 x_2^2 + x_3^2 - x_1^3 \\ x_1 + x_3^3 - x_2^3 \\ -x_1 x_3 - x_3 x_1^2 - x_2 x_3^2 - x_3^5 \end{bmatrix}$$

Show that the trajectories of the linearized system $\dot{x} = Df(0)x$ for this problem lie on circles in planes parallel to the x_1, x_2 plane; hence, the origin is stable, but not asymptotically stable for the linearized system.

2. Determine the stability of the system

$$\begin{aligned} \dot{x} &= -y - x^3 \\ \dot{y} &= x^5 \end{aligned}$$

Motivated by the first equation, try a Lyapunov function of the form $V(x, y) = \alpha x^6 + \beta y^2$. Is the origin asymptotically stable? Is the origin globally asymptotically stable?

3. Definition: An equilibrium point is *exponentially stable* if $\exists M, \alpha > 0$ and $\epsilon > 0$ such that $\|x(t)\| \leq M e^{-\alpha t} \|x(0)\|, \forall \|x(0)\| \leq \epsilon, t \geq 0$. Let $\dot{x} = f(x)$ be a dynamical system with an equilibrium point at $x_e = 0$. Show that if there is a function $V(x)$ satisfying

$$k_1 \|x\|^2 \leq V(x) \leq k_2 \|x\|^2, \quad \dot{V}(x) \leq -k_3 \|x\|^2$$

for positive constants k_1, k_2 and k_3 , then the equilibrium point at the origin is exponentially stable.

▪ Hint: you can use Gronwall's inequality from Section 2.3 of Perko.

4. **Perko, Section 2.12, problem 2** Use Theorem 1 [Center Manifold Theorem] to determine the qualitative behaviour near the non-hyperbolic critical point at the origin for the system

$$\begin{aligned} \dot{x} &= y \\ \dot{y} &= -y + \alpha x^2 + xy \end{aligned}$$

for $\alpha \neq 0$ and for $\alpha = 0$; i.e., follow the procedure in Example 1 after diagonalizing the system as in Example 3.

5. Consider the following system in \mathbb{R}^2 :

$$\begin{aligned} \dot{x} &= -\frac{\alpha}{2}(x^2 + y^2) + \alpha(x + y) - \alpha \\ \dot{y} &= -\alpha xy + \alpha(x + y) - \alpha \end{aligned}$$

Determine the stable, unstable, and centre manifold of the equilibrium point at $(x, y) = (1, 1)$, and determine the stability of this equilibrium point for $\alpha \neq 0$. For determining stability, note that near the equilibrium point there are two 1-dimensional invariant linear manifolds of the form $M = \{(a_1, a_2) \in \mathbb{R}^2 \mid a_2 = ka_1\}$; determine the flow on these invariant manifolds.

Retrieved from "https://www.cds.caltech.edu/~murray/wiki/index.php?title=CDS_140a_Winter_2014_Homework_5&oldid=16886"

- This page was last modified on 5 February 2014, at 09:37.