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What is the Logistic Map?

Defining Equation

xk+1 = axk (1− xk )

where a, xk ∈ R

Complex dynamics and bifurcation
to chaos
Allows us to visualize dynamics vs.
parameter in 2D
Fixed points at x = 0 and x = 1− 1

a

Bifurcation occurs at a = 1 (fixed
points interchange stability
properties)

Region of Attraction

0 ≤ x ≤ 1 1 ≤ a ≤ 4

1− 1
a
≤ x ≤ 1

a
0 ≤ a ≤ 1

1
a
≤ x ≤ 1− 1

a
−2 ≤ a ≤ 0.



Breaking the region of Attraction into Branches

Any semialgebraic set can be written as a union of basic
semialgebraic sets.
Proof can always be broken into pieces (union of empty
sets obviously empty).
Technique for breaking proofs into sets is reminiscent of
branch and bound in optimization.
In this case 2 sets is natural based on the geometry.
In general figuring out how to do this is not easy and
choosing wrong affects the proof “length”.

Semialgebraic sets for the branches

{1− (2x − 1)2 ≥ 0;−(a− 1)(a− 4) ≥ 0}
{(a− 2)2 − a2(2x − 1)2 ≥ 0;−(a + 2)(a− 1) ≥ 0}



Definitions

Definition
Given polynomials {g1, . . . , gt} ∈ R[x] the Multiplicative Monoid generated by
the gj ’s is the set of all finite products of the gj ’s including 1. This will be
denoted by M(g1, . . . , gt)

Definition
Given polynomials {f1, . . . , fs} ∈ R[x] the Algebraic Cone generated by the
fi ’s is the set

C(f1, . . . , fs) =

{
f

∣∣∣∣∣f = λ0 +
∑

i

λiFi

}
where Fi ∈ M(f1, . . . , fs), λi ’s are SOS Polynomials

Definition
Given polynomials {h1, . . . , hr} ∈ R[x] the Ideal generated by the hk ’s is the
set

I(h1, . . . , hr ) :=

{
h

∣∣∣∣∣h =
∑

k

µk hk

}
where µk ∈ R[x]



Positivstellensatz

Theorem

The set
{

fi(x) ≥ 0, gj(x) 6= 0, hk (x) = 0
}

is infeasible in Rn if and only if ∃ F , G, H such that

H + F = −G2

where i = 1, . . . , s j = 1, . . . , t k = 1, . . . , r
F ∈ C(f1, . . . , fs), G ∈ M(g1, . . . , gt), H ∈ I(h1, . . . , hr )

Holds for arbitrary systems of polynomial equations,
non-equalities and inequalities over the reals
By construction H + F ≥ 0 so H + F = −G2 provides a
contradiction.
Proofs called infeasibility certificates (P-satz refutations)



Useful expressions

Definition
The subset of the cone is the set of Fi ’s in the definition of the
Cone.

Definition
The proof order is the degree of the highest order term in the
Positivstellensatz refutation.

Definition
The SOS multiplier order is the order of each of the λi ’s in the
Cone.



Branch 1: −2 ≤ a ≤ 1

The Constraint Set

f1(a, x) = (a− 2)2 − a2(2x − 1)2 ≥ 0
f2(a, x) = −(a + 2)(a− 1) ≥ 0

f3(a, x) = a2(2ax(1− x)− 1)2 − (a− 2)2 ≥ 0
f3(a, x) 6= 0



Branch 1: −2 ≤ a ≤ 1

The Constraint Set

f1(a, x) = (a− 2)2 − a2(2x − 1)2 ≥ 0
f2(a, x) = −(a + 2)(a− 1) ≥ 0

f3(a, x) = a2(2ax(1− x)− 1)2 − (a− 2)2 ≥ 0
f3(a, x) 6= 0

Want SOS polynomials p0, pi , pij , pijk

−(f α
3 )2 = p0+

∑
i

pi fi+
∑
{i,j}

pij fi fj+
∑
{i,j,k}

pijk fi fj fk α ∈ {0, 1, 2 . . . }



Branch 1: −2 ≤ a ≤ 1

The Constraint Set

f1(a, x) = (a− 2)2 − a2(2x − 1)2 ≥ 0
f2(a, x) = −(a + 2)(a− 1) ≥ 0

f3(a, x) = a2(2ax(1− x)− 1)2 − (a− 2)2 ≥ 0
f3(a, x) 6= 0

Form of the Refutation

−f 2
3 = p13f1f3 + p123f1f2f3

where p13(a, x) = 4
3 −

2
3 a + 1

3 a2 − xa2 + x2a2, p123(a, x) = 1
3 .

Note p13 =
1
3

f2 + a(x2a − ax + 1) and f3 = −a(ax2 − xa + 1)f1



Branch 2: 1 ≤ a ≤ 4

The Constraint Set

f1(a, x) = 1− (2x − 1)2 ≥ 0
f2(a, x) = −(a− 1)(a− 4) ≥ 0

f3(a, x) = (2ax(1− x)− 1)2 − 1 ≥ 0
f3(a, x) 6= 0.



Branch 2: 1 ≤ a ≤ 4

The Constraint Set

f1(a, x) = 1− (2x − 1)2 ≥ 0
f2(a, x) = −(a− 1)(a− 4) ≥ 0

f3(a, x) = (2ax(1− x)− 1)2 − 1 ≥ 0
f3(a, x) 6= 0.

Form of the Refutation

−f 2
3 = p13f1f3 + p123f1f2f3

where p13(a, x) = 1
3 + 1

3 a + 1
3 a2 − xa2 + x2a2, p123(a, x) = 1

3 .

Note p13 = −1
3

f2 + (a2x2 − xa2 + 1) and f3 = −f1(a2x2 − xa2 + 1)



How to define/classify ‘Proof Length’

Order of the Proof and/or Order of the SOS Multipliers
Size and Conditioning of the SDP

Example (Order of the Proof)
For the 1 ≤ x ≤ 4 an
alternative refutation can is:

−f 2
3 = p0 + p1f1 + p2f2 + p3f3

Polynomial Order in x Order in a

p0 8 4
p1 6 4
p2 8 2
p3 4 2

Proofs same order but use
different subsets of the cone.
This proof is linear in fi ’s but the
SOS multipliers more complicated.
Which proof is longer?
Size and Conditioning of the SDP
may be a more natural choice BUT
are implementation dependent!
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What is the Mandelbrot Set?

The λ Parameterization

zk+1 = λzk (1− zk )

where λ, zk ∈ C

The complex version of the logistic map
Fixed points at z = 0 and z = 1− 1

λ

λ ∈ Mset ⇔ zk bounded
Color indicates no. iterations to unboundedness
(interpretation “distance” from Mset)
Important to note that Mandelbrot set is a subset of
parameter space not dynamical system space



What is the Mandelbrot Set?

The λ Parameterization

zk+1 = λzk (1− zk )

where λ, zk ∈ C

Set membership is undecidable in the sense of Turing
Classic computational problem that is easily visualized.
Most computational problems involve uncertain dynamical
systems, from protein folding to complex network analysis.
Not easily visualized.
Natural questions are typically computationally intractable,
and conventional methods provide little encouragement
that this can be systematically overcome.



Fragility In the Mandelbrot Set

Main idea

e.g. the boundary moves

In this case it is obvious 
that points near the 

boundary are “fragile”

“Fragile” means 
Membership changes when

the map is perturbed
( ) ( )kkk zzz −+=+ 11 δλ



Cyclic Lobes: Regional (“Global”) Proofs

zk+1 = λzk(1− zk)

V (zk) = |zk |2

Stability ⇔ V (zk) ≥ V (zk+1)

⇔ |zk |2 − |λzk(1− zk)|2 ≥ 0
⇐ 1 ≥ |λ||(1− zk)|



Cyclic Lobes: Regional (“Global”) Proofs

zk+1 = λzk(1− zk)

V (zk) = |zk |2

Stability ⇔ V (zk) ≥ V (zk+1)

⇔ |zk |2 − |λzk(1− zk)|2 ≥ 0
⇐ 1 ≥ |λ||(1− zk)|

{λ ≤ 1} ⊂ Mset



Cyclic Lobes: Regional (“Global”) Proofs

zk+1 = λzk(1− zk)

V (zk) = |zk |2

Stability ⇔ V (zk) ≥ V (zk+1)

⇔ |zk |2 − |λzk(1− zk)|2 ≥ 0
⇐ 1 ≥ |λ||(1− zk)|

{λ ≤ 1} ⊂ Mset

Julia Sets for |λ| = 0.75



The Left Lobe

Fixed point at z = (1− 1
λ
)

let wk = zk − z∗ then
wk+1 = wk(2− λ− λwk)

Using a similar Lyapunov Function

V (wk) = |wk |2

|wk+1|2 ≤ |wk |2 ⇐ |2−λ|+|λ||wk | ≤ 1

12 <−λ

{|2−λ| ≤ 1} ⊂ Mset



Regional (‘Global’) in λ Local in z

The 2-period map is

Q(z) = zk+2 = λzk+1(1− zk+1)

= λ2zk (1− zk )(1− λzk + λz2
k )

The fixed points of this map are

z∗
1 = 0, z∗

2 = 1− 1
λ

z∗
3,4 =

λ + 1±
√

λ2 − 2λ− 3
2λ

For an attracting fixed point∣∣∣Q̇∣∣∣ < 1

Using z∗
3

Q̇(z∗
3) =

d
dx

F (F (z))z=z∗3

= F ′(F (z∗
3))F ′(z∗

3)

= F ′(z∗
4)F ′(z∗

3)

= 4 + 2λ− λ2

Therefore the 2-cycle is locally attracting for |4 + 2λ− λ2| < 1.



2 Period Lobes

Letting λ = a + bi gives
(4−a2+2a+b)2+(2b−2ab)2 < 1.

−2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

a

b
1

2
6

2
6

diskThe

−<+λ

Want to show that:∣∣∣∣∣λ +

√
6

2

∣∣∣∣∣ <

√
6

2
− 1 ⊆ (4− a2 + 2a + b)2 + (2b − 2ab)2 − 1 < 0

This is equivalent to showing that;
(4− a2 + 2a + b)2 + (2b − 2ab)2 − 1 ≥ 0(√6

2
− 1

)2
−

(
a +

√
6

2

)2
+ b2 > 0

 = ∅



2 Period Lobes

Constraint Set

f1 = (4− a2 + 2a + b)2 + (2b − 2ab)2 − 1 ≥ 0

f2 =
(√6

2
− 1

)2
−

(
a +

√
6

2

)2
− b2 − ε ≥ 0

Positivstellensatz refutation
p0 + p1f1 + p2f2 = −1

p1 ' 395 and p2 = 4465.4 + 667.03a2 − 1974.1a + 1223.3b2

Determining set membership for local z values in the two
period region required an increase in both the order and
the size of the proof.
The proof is also ill conditioned.
These differences are associated with an increase in proof
length or ‘complexity’.



2 Period Lobes

Constraint Set

f1 = (4− a2 + 2a + b)2 + (2b − 2ab)2 − 1 ≥ 0

f2 =
(√6

2
− 1

)2
−

(
a +

√
6

2

)2
− b2 − ε ≥ 0

Positivstellensatz refutation (increasing ε)

p0 + p1f1 + p2f2 = −1

p1 = 19.51 and p2 = 223.48 + 49.25a2 − 112.24a + 68.32b2

Moving further away from the boundary (less fragile
region) improves conditioning.
This is good evidence that SDP conditioning should be
part of proof length definition.



2 Period Lobes

Constraint Set

f1 = (4− a2 + 2a + b)2 + (2b − 2ab)2 − 1 ≥ 0

f2 =
(√6

2
− 1

)2
−

(
a +

√
6

2

)2
− b2 − ε ≥ 0

Positivstellensatz refutation 2 (setting ε = 0)

p0 + p1f1 + p3f1f2 = −f22

p2 = 1.4b4+a4+4.8a3+2.9a2b2+7ab2+8.6a2+6.9a+4.1b2+2
p3 = 1.2a2b2 − .4ab2 + .3a2 + .94b2 + .35a + .34

Higher proof order with better conditioning



Outer Bounds

Assume
λ /∈ {|λ| ≤ 1} ∪ {|λ− 2| ≤ 1}

V (zk ) = |zk |2 increases

V (zk ) ≤ V (zk+1)

⇔ 1 ≤ |λ||(1− zk )|

⇐ |zk | − 1 ≥ 1
|λ|

⇔ |zk | ≥
1
|λ|

+ 1

Example (First iteration z0 = 1
2 )∣∣∣∣λ4

∣∣∣∣ ≥ 1
|λ|

+ 1

⇔ |λ|2 + 4|λ| − 4 ≥ 0



Fragility in the Mandelbrot Set
What is easy

Regional (‘Global’) proofs for the cyclic regions (in both z and λ).
Proofs for the 2 period lobes are linearized z space (‘global’ in λ).
Outer bounds for the set.
The fragility of the unresolved points is easily established.

“ White region is fragile” is a robust theorem and has a short proof.
Membership in white region is fragile and has complex proof.



Outline

1 The Logistic Map
Invariance Proofs
Proof Length (”Complexity”)

2 Mandelbrot Set
Inner and Outer Bounds
Fragility in the Mandelbrot Set

3 Summary



Summary

Summary
How might this help with organized complexity and robust yet
fragile?

Long proofs indicate a fragility.
Either a true fragility (a useful answer) or artifact of the
model (which must then be rectified).

This example is much simpler than general dynamical
systems where we cannot visualize things.
SOS methods and tools (SOSTOOLS) give general
purpose method to generate short proofs for Mandelbrot
set and other dynamical systems.
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