Outline

The Logistic Map

- Invariance Proofs
- Proof Length ("Complexity")

2 Mandelbrot Set

- Inner and Outer Bounds
- Fragility in the Mandelbrot Set

Outline

The Logistic Map

- Invariance Proofs
- Proof Length ("Complexity")

2 Mandelbrot Set

- Inner and Outer Bounds
- Fragility in the Mandelbrot Set

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

3 Summary

What is the Logistic Map?

Defining Equation $x_{k+1} = ax_k(1-x_k)$ where $a, x_k \in \mathbb{R}$ 2.5 2 Bifurcation 1.5 to Chaos x 0.5 0 -0.5 $-x = 1^{-\frac{1}{a}}$ -1 -1.5-2L -3 -2

- Complex dynamics and bifurcation to chaos
- Allows us to visualize dynamics vs. parameter in 2D
- Fixed points at x = 0 and $x = 1 \frac{1}{a}$
- Bifurcation occurs at *a* = 1 (fixed points interchange stability properties)

Region of Attraction $0 \le x \le 1$ $1 \le a \le 4$ $1 - \frac{1}{a} \le x \le \frac{1}{a}$ $0 \le a \le 1$ $\frac{1}{a} \le x \le 1 - \frac{1}{a}$ $-2 \le a \le 0$

Breaking the region of Attraction into Branches

- Any semialgebraic set can be written as a union of basic semialgebraic sets.
- Proof can always be broken into pieces (union of empty sets obviously empty).
- Technique for breaking proofs into sets is reminiscent of branch and bound in optimization.
- In this case 2 sets is natural based on the geometry.
- In general figuring out how to do this is not easy and choosing wrong affects the proof "length".

Semialgebraic sets for the branches

$$\{1-(2x-1)^2 \ge 0; -(a-1)(a-4) \ge 0\}$$

$$\{(a-2)^2 - a^2(2x-1)^2 \ge 0; -(a+2)(a-1) \ge 0\}$$

Definition

Given polynomials $\{g_1, \ldots, g_t\} \in \mathbb{R}[\mathbf{x}]$ the *Multiplicative Monoid* generated by the g_j 's is the set of all finite products of the g_j 's including 1. This will be denoted by $\mathbf{M}(g_1, \ldots, g_t)$

Definition

Given polynomials $\{f_1, \ldots, f_s\} \in \mathbb{R}[\mathbf{x}]$ the *Algebraic Cone* generated by the f_i 's is the set

$$\mathbf{C}(f_1,\ldots,f_s) = \left\{ f \left| f = \lambda_0 + \sum_i \lambda_i F_i \right. \right\}$$

where $F_i \in \mathbf{M}(f_1, \ldots, f_s), \lambda_i$'s are SOS Polynomials

Definition

Given polynomials $\{h_1, \ldots, h_r\} \in \mathbb{R}[\mathbf{x}]$ the *Ideal* generated by the h_k 's is the set

$$\mathsf{I}(h_1,\ldots,h_r) := \left\{ h \middle| h = \sum_k \mu_k h_k \right\} \quad \textit{where} \quad \mu_k \in \mathbb{R}[\mathbf{x}]$$

Positivstellensatz

Theorem

The set
$$\{f_i(\mathbf{x}) \geq 0, \quad g_j(\mathbf{x}) \neq 0, \quad h_k(\mathbf{x}) = 0\}$$

is infeasible in \mathbb{R}^n if and only if $\exists \ F, \ G, \ H$ such that $H+F=-G^2$

where
$$i = 1, ..., s \ j = 1, ..., t \ k = 1, ..., r$$

 $F \in \mathbf{C}(f_1, ..., f_s), \ G \in \mathbf{M}(g_1, ..., g_t), \ H \in \mathbf{I}(h_1, ..., h_r)$

- Holds for arbitrary systems of polynomial equations, non-equalities and inequalities over the reals
- By construction *H* + *F* ≥ 0 so *H* + *F* = −*G*² provides a contradiction.
- Proofs called infeasibility certificates (P-satz refutations)

Definition

The *subset of the cone* is the set of F_i 's in the definition of the **Cone**.

Definition

The *proof order* is the degree of the highest order term in the Positivstellensatz refutation.

Definition

The *SOS multiplier order* is the order of each of the λ_i 's in the **Cone**.

(日) (日) (日) (日) (日) (日) (日)

Branch 1: $-2 \le a \le 1$

The Constraint Set

$$egin{aligned} &f_1(a,x)=(a-2)^2-a^2(2x-1)^2\geq 0\ &f_2(a,x)=-(a+2)(a-1)\geq 0\ &f_3(a,x)=a^2(2ax(1-x)-1)^2-(a-2)^2\geq 0\ &f_3(a,x)
eq 0 \end{aligned}$$

Branch 1: $-2 \le a \le 1$

The Constraint Set

$$egin{aligned} &f_1(a,x)=(a-2)^2-a^2(2x-1)^2\geq 0\ &f_2(a,x)=-(a+2)(a-1)\geq 0\ &f_3(a,x)=a^2(2ax(1-x)-1)^2-(a-2)^2\geq 0\ &f_3(a,x)
eq 0 \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Want SOS polynomials $p_0, p_i, p_{ij}, p_{ijk}$

$$-(f_3^{\alpha})^2 = p_0 + \sum_i p_i f_i + \sum_{\{i,j\}} p_{ij} f_i f_j + \sum_{\{i,j,k\}} p_{ijk} f_i f_j f_k \quad \alpha \in \{0, 1, 2...\}$$

Branch 1: $-2 \le a \le 1$

The Constraint Set

$$egin{aligned} &f_1(a,x)=(a-2)^2-a^2(2x-1)^2\geq 0\ &f_2(a,x)=-(a+2)(a-1)\geq 0\ &f_3(a,x)=a^2(2ax(1-x)-1)^2-(a-2)^2\geq 0\ &f_3(a,x)
eq 0 \end{aligned}$$

Form of the Refutation

$$-f_3^2 = p_{13}f_1f_3 + p_{123}f_1f_2f_3$$

where $p_{13}(a, x) = \frac{4}{3} - \frac{2}{3}a + \frac{1}{3}a^2 - xa^2 + x^2a^2$, $p_{123}(a, x) = \frac{1}{3}$.
Note $p_{13} = \frac{1}{3}f_2 + a(x^2a - ax + 1)$ and $f_3 = -a(ax^2 - xa + 1)f_1$

Branch 2: $1 \le a \le 4$

The Constraint Set

$$\begin{split} f_1(a,x) &= 1 - (2x-1)^2 \geq 0 \\ f_2(a,x) &= -(a-1)(a-4) \geq 0 \\ f_3(a,x) &= (2ax(1-x)-1)^2 - 1 \geq 0 \\ f_3(a,x) &\neq 0. \end{split}$$

Branch 2: $1 \le a \le 4$

The Constraint Set

$$egin{aligned} &f_1(a,x) = 1 - (2x-1)^2 \geq 0 \ &f_2(a,x) = -(a-1)(a-4) \geq 0 \ &f_3(a,x) = (2ax(1-x)-1)^2 - 1 \geq 0 \ &f_3(a,x)
eq 0. \end{aligned}$$

Form of the Refutation

$$-f_3^2 = p_{13}f_1f_3 + p_{123}f_1f_2f_3$$

where $p_{13}(a, x) = \frac{1}{3} + \frac{1}{3}a + \frac{1}{3}a^2 - xa^2 + x^2a^2$, $p_{123}(a, x) = \frac{1}{3}$.

Note
$$p_{13} = -\frac{1}{3}f_2 + (a^2x^2 - xa^2 + 1)$$
 and $f_3 = -f_1(a^2x^2 - xa^2 + 1)$

How to define/classify 'Proof Length'

- Order of the Proof and/or Order of the SOS Multipliers
- Size and Conditioning of the SDP

Example (Order of the Proof)

For the $1 \le x \le 4$ an alternative refutation can is:

$$-f_3^2 = p_0 + p_1f_1 + p_2f_2 + p_3f_3$$

Polynomial	Order in x	Order in a
p_0	8	4
<i>p</i> ₁	6	4
<i>p</i> ₂	8	2
<i>p</i> 3	4	2

- Proofs same order but use different subsets of the cone.
- This proof is linear in *f*_{*i*}'s but the SOS multipliers more complicated.
- Which proof is longer?
- Size and Conditioning of the SDP may be a more natural choice BUT are implementation dependent!

The Logistic Map

- Invariance Proofs
- Proof Length ("Complexity")

2 Mandelbrot Set

- Inner and Outer Bounds
- Fragility in the Mandelbrot Set

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

3 Summary

What is the Mandelbrot Set?

- The complex version of the logistic map
- Fixed points at z = 0 and $z = 1 \frac{1}{\lambda}$
- $\lambda \in Mset \Leftrightarrow z_k$ bounded
- Color indicates no. iterations to unboundedness (interpretation "distance" from Mset)
- Important to note that Mandelbrot set is a subset of parameter space not dynamical system space

What is the Mandelbrot Set?

- Set membership is undecidable in the sense of Turing
- Classic computational problem that is easily visualized.
- Most computational problems involve uncertain dynamical systems, from protein folding to complex network analysis. Not easily visualized.
- Natural questions are typically computationally intractable, and conventional methods provide little encouragement that this can be systematically overcome.

Fragility In the Mandelbrot Set

Main idea

"Fragile" means Membership changes when the map is perturbed $z_{k+1} = (\lambda + \delta)z_k(1 - z_k)$ e.g. the boundary moves

In this case it is obvious that points near the boundary are "fragile"...

Cyclic Lobes: Regional ("Global") Proofs

$$z_{k+1} = \lambda z_k (1 - z_k)$$

$$egin{aligned} V(z_k) &= |z_k|^2 \ Stability &\Leftrightarrow V(z_k) \geq V(z_{k+1}) \ &\Leftrightarrow |z_k|^2 - |\lambda z_k (1-z_k)|^2 \geq 0 \ &\leqslant 1 \geq |\lambda| |(1-z_k)| \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Cyclic Lobes: Regional ("Global") Proofs

$$z_{k+1} = \lambda z_k (1 - z_k)$$

$$egin{aligned} V(z_k) &= |z_k|^2 \ Stability &\Leftrightarrow V(z_k) \geq V(z_{k+1}) \ &\Leftrightarrow |z_k|^2 - |\lambda z_k (1-z_k)|^2 \geq 0 \ &\leqslant 1 \geq |\lambda| |(1-z_k)| \end{aligned}$$

ロト・日本・日本・日本・日本・今日の

 $\{\lambda \leq \mathbf{1}\} \subset Mset$

Cyclic Lobes: Regional ("Global") Proofs

$$z_{k+1} = \lambda z_k (1 - z_k)$$

$$egin{aligned} V(z_k) &= |z_k|^2 \ Stability &\Leftrightarrow V(z_k) \geq V(z_{k+1}) \ &\Leftrightarrow |z_k|^2 - |\lambda z_k (1-z_k)|^2 \geq 0 \ &\Leftarrow 1 \geq |\lambda| |(1-z_k)| \end{aligned}$$

Fixed point at $z = (1 - \frac{1}{\lambda})$

let $w_k = z_k - z^*$ then $w_{k+1} = w_k (2 - \lambda - \lambda w_k)$

Using a similar Lyapunov Function

$$V(w_k) = |w_k|^2$$

 $w_{k+1}|^2 \le |w_k|^2 \Leftarrow |2 - \lambda| + |\lambda||w_k| \le 1$

$$\{|\mathbf{2}-\lambda|\leq\mathbf{1}\}\subset$$
 Mset

(日) (日) (日) (日) (日) (日) (日)

Regional ('Global') in λ Local in z

• The 2-period map is

$$Q(z) = z_{k+2} = \lambda z_{k+1}(1 - z_{k+1})$$

$$= \lambda^2 z_k(1 - z_k)(1 - \lambda z_k + \lambda z_k^2)$$
For an attracting fixed point

$$\begin{vmatrix} \dot{Q} \\ < 1 \\
Using z_3^* \\
 Using z_3^* \\
 = F'(F(z_3))F'(z_3) \\
 = F'(z_4^*)F'(z_3) \\
 = 4 + 2\lambda - \lambda^2
\end{bmatrix}$$

Therefore the 2-cycle is locally attracting for $|4 + 2\lambda - \lambda^2| < 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\left|\lambda + \frac{\sqrt{6}}{2}\right| < \frac{\sqrt{6}}{2} - 1 \subseteq (4 - a^2 + 2a + b)^2 + (2b - 2ab)^2 - 1 < 0$$

This is equivalent to showing that;

$$\left\{ \frac{(4-a^2+2a+b)^2+(2b-2ab)^2-1\geq 0}{\left(\frac{\sqrt{6}}{2}-1\right)^2-\left(a+\frac{\sqrt{6}}{2}\right)^2+b^2>0} \right\} = \emptyset$$

Constraint Set

$$\begin{array}{rcl} f_1 & = & (4-a^2+2a+b)^2+(2b-2ab)^2-1 \geq 0 \\ f_2 & = & \left(\frac{\sqrt{6}}{2}-1\right)^2-\left(a+\frac{\sqrt{6}}{2}\right)^2-b^2-\varepsilon \geq 0 \end{array}$$

Positivstellensatz refutation

$$p_0 + p_1 f_1 + p_2 f_2 = -1$$

 $p_1 \simeq 395 \text{ and } p_2 = 4465.4 + 667.03a^2 - 1974.1a + 1223.3b^2$

- Determining set membership for local z values in the two period region required an increase in both the order and the size of the proof.
- The proof is also ill conditioned.
- These differences are associated with an increase in proof length or 'complexity'.

Constraint Set

$$f_1 = (4 - a^2 + 2a + b)^2 + (2b - 2ab)^2 - 1 \ge 0$$

$$f_2 = \left(\frac{\sqrt{6}}{2} - 1\right)^2 - \left(a + \frac{\sqrt{6}}{2}\right)^2 - b^2 - \varepsilon \ge 0$$

Positivstellensatz refutation (increasing ε)

$$p_0 + p_1 f_1 + p_2 f_2 = -1$$

 $p_1 = 19.51$ and $p_2 = 223.48 + 49.25a^2 - 112.24a + 68.32b^2$

- Moving further away from the boundary (less fragile region) improves conditioning.
- This is good evidence that SDP conditioning should be part of proof length definition.

Constraint Set

$$f_1 = (4 - a^2 + 2a + b)^2 + (2b - 2ab)^2 - 1 \ge 0$$

$$f_2 = \left(\frac{\sqrt{6}}{2} - 1\right)^2 - \left(a + \frac{\sqrt{6}}{2}\right)^2 - b^2 - \varepsilon \ge 0$$

Positivstellensatz refutation 2 (setting $\varepsilon = 0$)

$$p_0 + p_1 f_1 + p_3 f_1 f_2 = -f 2^2$$

 $p_2 = 1.4b^4 + a^4 + 4.8a^3 + 2.9a^2b^2 + 7ab^2 + 8.6a^2 + 6.9a + 4.1b^2 + 2$ $p_3 = 1.2a^2b^2 - .4ab^2 + .3a^2 + .94b^2 + .35a + .34$

(日) (日) (日) (日) (日) (日) (日)

Higher proof order with better conditioning

Outer Bounds

Assume

$$\lambda \notin \{|\lambda| \leq 1\} \cup \{|\lambda - 2| \leq 1\}$$

 $egin{aligned} V(z_k) &= |z_k|^2 ext{ increases} \ V(z_k) &\leq V(z_{k+1}) \ &\Leftrightarrow 1 \leq |\lambda| |(1-z_k)| \ &\Leftarrow |z_k| - 1 \geq rac{1}{|\lambda|} \ &\Leftrightarrow |z_k| \geq rac{1}{|\lambda|} + 1 \end{aligned}$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで

Fragility in the Mandelbrot Set

What is easy

- Regional ('Global') proofs for the cyclic regions (in both *z* and λ).
- Proofs for the 2 period lobes are linearized z space ('global' in λ).
- Outer bounds for the set.
- The fragility of the unresolved points is easily established.
 - "White region is fragile" is a robust theorem and has a short proof.
 - Membership in white region is fragile and has complex proof.

イロト 不良 とくほ とくほう 二日

The Logistic Map

- Invariance Proofs
- Proof Length ("Complexity")

2 Mandelbrot Set

- Inner and Outer Bounds
- Fragility in the Mandelbrot Set

・ロト・西ト・西ト・日・ つくぐ

Summary

How might this help with organized complexity and robust yet fragile?

- Long proofs indicate a fragility.
 - Either a true fragility (a useful answer) or artifact of the model (which must then be rectified).
- This example is much simpler than general dynamical systems where we cannot visualize things.
- SOS methods and tools (SOSTOOLS) give general purpose method to generate short proofs for Mandelbrot set and other dynamical systems.