
SOSTOOLS and its Control Applications

Stephen Prajna1, Antonis Papachristodoulou1, Peter Seiler2, and
Pablo A. Parrilo3

1 Control and Dynamical Systems, California Institute of Technology, Pasadena,
CA 91125, USA. E-mail: {prajna,antonis}@cds.caltech.edu

2 Mechanical and Industrial Engineering Dept., University of Illinois at
Urbana-Champaign, Urbana, IL 61801, USA. E-mail: pseiler@uiuc.edu

3 Automatic Control Laboratory, Swiss Federal Institute of Technology, CH-8092
Zürich, Switzerland. E-mail: parrilo@control.ee.ethz.ch

Summary. In this chapter we present SOSTOOLS, a third-party MATLAB toolbox
for formulating and solving sum of squares optimization problems. Sum of squares
optimization forms a basis for formulating convex relaxations to computationally
hard problems such as some that appear in systems and control. Currently, sum of
squares programs are solved by casting them as semidefinite programs, which can
in turn be solved using interior-point based numerical methods. SOSTOOLS helps
this translation in such a way that the underlying computations are abstracted from
the user. Here we give a brief description of the toolbox, its features and capabilities
(with emphasis on the recently added ones), as well as show how it can be applied
to solving problems of interest in systems and control.

1 Introduction

There has been a great interest recently in sum of squares polynomials and
sum of squares optimization [34, 1, 31, 17, 18, 13, 11], partly due to the fact
that these techniques provide convex polynomial time relaxations for many
hard problems such as global, constrained, and Boolean optimization, as well
as various problem in systems and control. The observation that the sum
of squares decomposition can be computed efficiently using semidefinite pro-
gramming [17] has initiated the development of software tools that facilitate
the formulation of the semidefinite programs from their sum of squares equiv-
alents. One such a software is SOSTOOLS [24, 25, 26], a free third-party
MATLAB4 toolbox for solving sum of squares programs.

A multivariate polynomial p(x1, . . . , xn) , p(x) is a sum of squares (SOS),
if there exist polynomials f1(x), . . . , fm(x) such that

4 A registered trademark of The MathWorks, Inc.

2 S. Prajna, A. Papachristodoulou, P. Seiler, P. A. Parrilo

p(x) =
m∑

i=1

f2
i (x). (1)

It follows from the definition that the set of sums of squares polynomials in
n variables is a convex cone. The existence of an SOS decomposition (1) can
be shown to be equivalent to the existence of a positive semidefinite matrix
Q such that

p(x) = ZT (x)QZ(x), (2)

where Z(x) is the vector of monomials of degree less than or equal to deg(p)/2,
i.e., its entries are of the form xα = xα1

1 . . . xαn
n , where the α’s are nonnegative

integers and α1 + . . . + αn ≤ deg(p)/2. Expressing an SOS polynomial as a
quadratic form in (2) has also been referred to as the Gram matrix method
[1, 20]. The decomposition (1) can be easily converted into (2) and vice versa.
This equivalence makes an SOS decomposition computable using semidefinite
programming, since finding a symmetric matrix Q º 0 subject to the affine
constraint (2) is nothing but a semidefinite programming problem.

It is clear that a sum of squares polynomial is globally nonnegative. This
is a property of SOS polynomials that is crucial in many control applications,
where we replace various polynomial inequalities with SOS conditions. How-
ever, it should be noted that not all nonnegative polynomials are necessarily
sums of squares. The equivalence between nonnegativity and sum of squares
is only guaranteed in three cases, those of univariate polynomials of any even
degree, quadratic polynomials in any number of indeterminates, and quar-
tic polynomials in three variables [31]. Indeed nonnegativity is NP-hard to
test [12], whereas the SOS conditions are polynomial time verifiable through
solving appropriate semidefinite programs. Despite this, in many cases we are
able to obtain solutions to computational problems that are otherwise at the
moment unsolvable, simply by replacing the nonnegativity conditions with
SOS conditions.

A sum of squares program is a convex optimization problem of the follow-
ing form:

Minimize
J∑

j=1

wjcj (3)

subject to

ai,0(x) +
J∑

j=1

ai,j(x)cj is SOS, for i = 1, ..., I, (4)

where the cj ’s are the scalar real decision variables, the wj ’s are given real
numbers, and the ai,j(x) are given polynomials (with fixed coefficients). See
also another equivalent canonical form of SOS programs in [24, 25]. While
the conversion from SOS programs to semidefinite programs (SDPs) can be
manually performed for small size instances or tailored for specific problem

SOSTOOLS and its Control Applications 3

SOSP SDP

SOSP
Solution Solution

SDP

SeDuMi/
SDPT3

SOSTOOLS

SOSTOOLS

Fig. 1. Diagram depicting relations between sum of squares program (SOSP),
semidefinite program (SDP), SOSTOOLS, and SeDuMi or SDPT3.

classes, such a conversion can be quite cumbersome to perform in general. It is
therefore desirable to have a computational aid that automatically performs
this conversion for general SOS programs. This is exactly what SOSTOOLS
is useful for. It automates the conversion from SOS program to SDP, calls
the SDP solver, and converts the SDP solution back to the solution of the
original SOS program (see Figure 1). The current version of SOSTOOLS uses
either SeDuMi [35] or SDPT3 [37], both of which are free MATLAB add-ons,
as the SDP solver. The user interface of SOSTOOLS has been designed to be
as simple, as easy to use, and as transparent as possible, while keeping a large
degree of flexibility.

In addition to the optimization problems mentioned above (a related re-
cent software in this regard is GloptiPoly [8], which solves global optimization
problems over polynomials, based on the method in [11]), sum of squares poly-
nomials and SOSTOOLS find applications in several control theory problems.
These problems include stability analysis of nonlinear, hybrid, and time-delay
systems [17, 15, 23, 14], robustness analysis [17, 15, 23], estimation of domain
of attraction [17, 33], LPV analysis and synthesis [39], nonlinear synthesis
[9, 28, 27], safety verification [22], and model validation [21]. Other areas in
which SOSTOOLS is applicable are, for instance, geometric theorem proving
[19] and quantum information theory [2].

In Section 2, we present the main features of SOSTOOLS and point out
improvements that have been made in the user interface, custom-made func-
tions, and modularity with respect to the choice of semidefinite programming
solver. Some control oriented application examples will then be provided in
Section 3. In particular, we will consider nonlinear stability analysis, paramet-
ric robustness analysis, analysis of time-delay systems, safety verification, and

4 S. Prajna, A. Papachristodoulou, P. Seiler, P. A. Parrilo

nonlinear controller synthesis. We show how sum of squares programs corre-
sponding to these problems can be formulated, which in turn can be solved
using SOSTOOLS.

2 SOSTOOLS Features

It has been mentioned in the introduction that the main purpose of SOS-
TOOLS is to efficiently transform SOS programs of the form (3)–(4) into
semidefinite programs (SDPs), which can then be solved using an SDP solver.
The solution is then retrieved from the solver and translated into the orig-
inal polynomial variables. In this way, the details of the reformulation are
abstracted from the user, who can work at the polynomial object level.

Polynomial variables in SOSTOOLS can be defined in two different ways:
as a symbolic object through the use of the MATLAB Symbolic Math Tool-
box, or as a custom-built polynomial object using the integrated Multivariate
Polynomial Toolbox. The former option provides to the user the benefit of
making use of all the features in the Symbolic Math Toolbox, which range
from simple arithmetic operations to differentiation, integration and polyno-
mial manipulation. On the other hand, the Multivariate Polynomial Toolbox
allows users that do not have access to the Symbolic Math Toolbox to use SOS-
TOOLS. Some basic polynomial manipulation functions are also provided in
this toolbox.

To define and solve an SOS program using SOSTOOLS, the user simply
needs to follow these steps:

1. Initialize the SOS program.
2. Declare the SOS program variables.
3. Define the SOS program constraints, namely Eq. (4).
4. Set the objective function, namely Eq. (3).
5. Call solver.
6. Get solutions.

We will give a short illustration of these steps in Section 2.1. However, we
will not entail in a discussion of how each of these steps is performed nor the
SOSTOOLS commands relevant to this. A detailed description can be found
in the SOSTOOLS user’s guide [25].

In many cases, the SOS program we wish to solve have certain structural
properties, such as sparsity, symmetry, and so on. The formulation of the SDP
in this case should take into account these properties. This will not only reduce
significantly the computational burden of solving it, as the size of the SDP
will reduce considerably, but also it removes numerical ill-conditioning. With
regard to this, provision has been taken in SOSTOOLS for exploitation of
polynomial sparsity when formulating the SDP. The details will be described
in Section 2.2.

SOSTOOLS and its Control Applications 5

The frequent use of certain sum of squares programs, such as those corre-
sponding to

• finding the sum of squares decomposition of a polynomial,
• finding lower bounds on polynomial minima, and
• constructing Lyapunov functions for systems with polynomial vector fields

are reflected in the inclusion of customized functions in SOSTOOLS. Some of
these customized functions will be discussed at the end of the section.

2.1 Formulating Sum of Squares Programs

In the original release of SOSTOOLS, polynomials were implemented solely
as symbolic objects, making full use of the capabilities of the MATLAB Sym-
bolic Math Toolbox. This gives to the user the benefit of being able to do
all polynomial manipulations using the usual arithmetic operators: +, -, *, /,
^; as well as operations such as differentiation, integration, point evaluation,
etc. In addition, it provides the possibility of interfacing with the Maple5 sym-
bolic engine and the Maple library (which is very advantageous). On the other
hand, this prohibited those without access to the Symbolic Toolbox (such as
those using the student edition of MATLAB) from using SOSTOOLS. In the
current SOSTOOLS release, the user has the option of using an alternative
custom-built polynomial object, along with some basic polynomial manipula-
tion methods to represent and manipulate polynomials.

Using the Symbolic Toolbox, a polynomial is created by declaring its
independent variables as symbolic variables in the symbolic toolbox and
constructing it in a similar way. For example, to create the polynomial
p(x, y) = 2x2 + 3xy + 4y4, one declares the variables x and y by typing

>> syms x y

and constructs p(x, y) as follows:

>> p = 2*x^2 + 3*x*y + 4*y^4

In a similar manner, one can define this polynomial using the Multivari-
ate Polynomial Toolbox, a freely available toolbox that has been integrated
in SOSTOOLS for constructing and manipulating multivariate polynomials.
Polynomial variables are created with the pvar command. Here the same
polynomial can be constructed by declaring first the variables:

>> pvar x y

Note that pvar is used to replace the command syms. New polynomial objects
can now be created from these variables, and manipulated using standard
addition, multiplication, and integer exponentiation functions:

>> p = 2*x^2 + 3*x*y + 4*y^4

5 A registered trademark of Waterloo Maple Inc.

6 S. Prajna, A. Papachristodoulou, P. Seiler, P. A. Parrilo

Matrices of polynomials can also be created from polynomials using horizon-
tal/vertical concatenation and block diagonal augmentation. A few additional
operations exist in this initial version of the toolbox such as trace, transpose,
determinant, differentiation, logical equal, and logical not equal.

The input to the SOSTOOLS commands can be specified using either
the symbolic objects or the new polynomial objects. There are some minor
variations in performance depending on the degree/number of variables of
the polynomials, due the fact that the new implementation always keeps an
expanded internal representation, but for most reasonable-sized problems the
difference is minimal.

For an illustration, let us now consider the problem of finding a lower
bound for the global minimum of the Goldstein-Price test function [5]

f(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]...
... [30 + (2x1 − 3x2)2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)].

The SOS program for this problem is

Minimize −γ,
such that

(f(x)− γ) is SOS.

It is clear that any value of γ for which f(x) − γ is an SOS will serve as a
lower bound for the polynomial, since in that case f(x) − γ is nonnegative.
By maximizing γ (or equivalently, minimizing −γ), a tighter lower bound can
be computed.

In this example, the SOS program is initialized and the decision variable
γ is declared using the following commands (assuming that we use the poly-
nomial objects)

>> pvar x1 x2 gam;
>> prog = sosprogram([x1; x2],gam);

The function f(x) is constructed as follows

>> f1 = x1+x2+1;
>> f2 = 19-14*x1+3*x1^2-14*x2+6*x1*x2+3*x2^2;
>> f3 = 2*x1-3*x2;
>> f4 = 18-32*x1+12*x1^2+48*x2-36*x1*x2+27*x2^2;
>> f = (1+f1^2*f2)*(30+f3^2*f4);

Then the SOS program constraint “f(x)−γ is SOS” and the objective function
are set, and the SOS program is solved using the following commands

>> prog = sosineq(prog,f-gam);
>> prog = sossetobj(prog,-gam);
>> prog = sossolve(prog);

SOSTOOLS and its Control Applications 7

The optimal lower bound is then retrieved by

>> gam = sosgetsol(prog,gam);

The result given by SOSTOOLS is γ = 3. This is in fact the global minimum
of f(x), achieved at x1 = 0, x2 = −1. The same example can also be solved
using the customized function findbound as follows

>> [gam,vars,xopt] = findbound(f);

2.2 Exploiting Sparsity

The complexity of computing a sum of squares decomposition for a polynomial
p(x) depends on two factors: the dimension of the independent variable x and
the degree of the polynomial. As mentioned previously, when p(x) has special
structural properties, the computation effort can be notably simplified through
the reduction of the size of the semidefinite program, removal of degeneracies,
and better numerical conditioning.

The first type of simplification can be performed when p(x) is sparse. The
notion of sparseness for multivariate polynomials is stronger than the one com-
monly used for matrices. While in the matrix case this word usually means
that many coefficients are zero, in the polynomial case the specific vanishing
pattern is also taken into account. This idea is formalized by the concept of
Newton polytope [36], defined as the convex hull of the set of exponents, con-
sidered as vectors in Rn. It was shown by Reznick in [30] that Z(x) need only
contain monomials whose squared degrees are contained in the convex hull of
the degrees of monomials in p(x). Consequently, for sparse p(x) the size of the
vector Z(x) and matrix Q appearing in the sum of squares decomposition can
be reduced which results in a decrease of the size of the semidefinite program.

Since the initial version of SOSTOOLS, Newton polytopes techniques have
been available via the optional argument ’sparse’ to the function sosineq,
and in the new release, the support for sparse polynomials has been improved.
SOSTOOLS takes the sparse structure into account, and chooses an appro-
priate set of monomials for the sum of squares decompositions with the con-
vex hull computation performed either by the native MATLAB command
convhulln (which is based on the software QHULL), or the specialized ex-
ternal package CDD [3]. Special care is taken with the case when the set of
exponents has lower affine dimension than the number of variables (this case
occurs for instance for homogeneous polynomials, where the sum of the de-
grees is equal to a constant), in which case a projection to a lower dimensional
space is performed prior to the convex hull computation.

A special sparsity structure that appears frequently in robust control the-
ory when considering, for instance, Lyapunov function analysis for linear sys-
tems with parametric uncertainty (see Section 3.2), is called the multipartite
structure (see [26] for a definition). Such a structure also appears when con-
sidering infinitely constrained linear matrix inequalities (LMIs) of the form:

8 S. Prajna, A. Papachristodoulou, P. Seiler, P. A. Parrilo

Minimize
J∑

j=1

wjcj

subject to

A0(x) +
J∑

j=1

Aj(x)cj º 0 ∀x ∈ Rn,

where the cj ’s and wj ’s are again the decision variables and given real numbers,
respectively, and the Aj(x)’s are given symmetric polynomial matrices. By
introducing a new set of indeterminates y, defining pj(x, y) = yT Aj(x)y, and
replacing the positive semidefiniteness condition A0(x) +

∑
Aj(x)cj º 0 by

sum of squares condition

p(x, y) = p0(x, y) +
J∑

j=1

pj(x, y)cj is SOS, (5)

obviously the original LMIs can be computationally relaxed to an SOS pro-
gram (a positive semidefinite matrix A(x) for which yT A(x)y is an SOS is
called an SOS matrix in [4]). The resulting polynomial (5) has the multipar-
tite structure (in this case it is actually bipartite): its independent variable
can be naturally partitioned into two sets x and y, where the degree of the
polynomial in x can be arbitrary, and the degree in y is always equal to two.
What distinguishes this case from a general sparsity, is that the Newton poly-
tope of p(x, y) is the Cartesian product of the individual Newton polytopes
corresponding to the blocks of variables. Because of this structure, only mono-
mials of the form xαyi will appear in the monomial vector Z(x, y). The current
version of SOSTOOLS provides a support for the multipartite structure via
the argument ’sparsemultipartite’ to the function sosineq, by computing
a reduced set of monomials in an efficient manner.

To illustrate the benefit of using the sparse multipartite option, consider
the problem of checking whether a polynomial matrix inequality

F (x) = FT (x) º 0 ∀x ∈ Rn

holds, where F ∈ R[x]m×m. A sufficient test for positive semidefiniteness of
F (x) is obtained by showing that the bipartite polynomial yT F (x)y is a sum
of squares (equivalently, showing that F (x) is an SOS matrix). We denote the
degree of F by d. For various values of (m,n, d), the sizes of the resulting
semidefinite programs are depicted in Table 1.

2.3 Customized Functions

The SOSTOOLS package includes several “ready-made” customized functions
that solve specific problems directly, by internally reformulating them as SOS

SOSTOOLS and its Control Applications 9

(m, n, d) Without multipartite option With multipartite option

(3, 2, 2) 15× 15, 90 constraints 9× 9, 36 constraints
(4, 2, 2) 21× 21, 161 constraints 12× 12, 60 constraints
(3, 3, 2) 21× 21, 161 constraints 12× 12, 60 constraints
(4, 3, 2) 28× 28, 266 constraints 16× 16, 100 constraints
(3, 2, 4) 35× 35, 279 constraints 18× 18, 90 constraints
(4, 2, 4) 53× 53, 573 constraints 24× 24, 150 constraints
(3, 3, 4) 59× 59, 647 constraints 30× 30, 210 constraints
(4, 3, 4) 84× 84, 1210 constraints 40× 40, 350 constraints

Table 1. Sizes of the semidefinite programs for proving F (x) º 0, where F ∈
R[x]m×m has degree d and x ∈ Rn, with and without the sparse multipartite option.

programs. One of these functions is findbound, a function for finding a lower
bound of a polynomial, whose usage we have seen at the end of Section 2.1.
In the new version, these customized functions have been updated and sev-
eral new capabilities have been added. For instance, the customized function
findbound, which previously could only handle unconstrained global polyno-
mial optimization problems, can now be used to solve constrained polynomial
optimization problems of the form:

minimize f(x)
subject to gi(x) ≥ 0, i = 1, ..., M

hj(x) = 0, j = 1, ..., N.

A lower bound for f(x) can be computed using Positivstellensatz-based relax-
ations. Assume that there exists a set of sums of squares σj(x)’s, and a set of
polynomials λi(x)’s, such that

f(x)− γ = σ0(x) +
∑

j

λj(x)hj(x) +
∑

i

σi(x)gi(x)+

+
∑

i1,i2

σi1,i2(x)gi1(x)gi2(x) + · · · (6)

then it follows that γ is a lower bound for the constrained optimization
problem stated above. This specific kind of representation corresponds to
Schmüdgen’s theorem [32]. By maximizing γ, we can obtain a lower bound
that becomes increasingly tighter as the degree of the expression (6) is in-
creased.

Another new feature can be found in the customized function findsos,
which is used for computing an SOS decomposition. For certain applications,
it is particularly important to ensure that the SOS decomposition found nu-
merically by SDP methods actually corresponds to a true solution, and is not
the result of roundoff errors. This is specially true in the case of ill-conditioned
problems, since SDP solvers can sometimes produce in this case unreliable re-
sults. There are several ways of doing this, for instance using backwards error

10 S. Prajna, A. Papachristodoulou, P. Seiler, P. A. Parrilo

analysis, or by computing rational solutions, that we can fully verify symboli-
cally. Towards this end, we have incorporated an experimental option to round
to rational numbers a candidate floating point SDP solution, in such a way to
produce an exact SOS representation of the input polynomial (which should
have integer or rational coefficients). The procedure will succeed if the com-
puted solution is “well-centered,” far away from the boundary of the feasible
set; the details of the rounding procedure will be explained elsewhere. Cur-
rently, this facility is available only through the customized function findsos,
by giving an additional input argument ‘rational’. On future releases, we
may extend this to more general SOS program formulations.

3 Control Applications

We will now see how sum of squares programs can be formulated to solve
several problems arising in systems and control, such as nonlinear stability
analysis, parametric robustness analysis, stability analysis of time-delay sys-
tems, safety verification, and nonlinear controller synthesis.

3.1 Nonlinear Stability Analysis

The Lyapunov stability theorem (see e.g. [10]) has been a cornerstone of non-
linear system analysis for several decades. In principle, the theorem states that
a system ẋ = f(x) with equilibrium at the origin is stable if there exists a
positive definite function V (x) such that the derivative of V along the system
trajectories is non-positive.

We will now show how the search for a Lyapunov function can be formu-
lated as a sum of squares program. Readers are referred to [17, 15, 23] for more
detailed discussions and extensions. For our example, consider the system

ẋ1

ẋ2

ẋ3

 =

−x3
1 − x1x

2
3

−x2 − x2
1x2

−x3 − 3x3
x2
3+1

+ 3x2
1x3

 , (7)

which has an equilibrium at the origin. Notice that the linearization of (7)
has zero eigenvalue, and therefore cannot be used to analyze local stability of
the equilibrium. Now assume that we are interested in a quadratic Lyapunov
function V (x) for proving stability of the system. Then V (x) must satisfy

V − ε(x2
1 + x2

2 + x2
3) ≥ 0,

− ∂V

∂x1
ẋ1 − ∂V

∂x2
ẋ2 − ∂V

∂x3
ẋ3 ≥ 0. (8)

The first inequality, with ε being any constant greater than zero (in what
follows we will choose ε = 1), is needed to guarantee positive definiteness of

SOSTOOLS and its Control Applications 11

V (x). We will formulate an SOS program that computes a Lyapunov function
for this system, by replacing the above nonnegativity conditions with SOS
conditions. However, notice that ẋ3 is a rational function, and therefore (8)
is not a polynomial expression. But since x2

3 + 1 > 0 for any x3, we can just
reformulate (8) as

(x2
3 + 1)

(
− ∂V

∂x1
ẋ1 − ∂V

∂x2
ẋ2 − ∂V

∂x3
ẋ3

)
≥ 0.

Next, we parameterize the candidate quadratic Lyapunov function V (x) by
some unknown real coefficients c1, ..., c6:

V (x) = c1x
2
1 + c2x1x2 + c3x

2
2 + ... + c6x

2
3,

and the following SOS program (with no objective function) can be formulated

Find a polynomial V (x), (equivalently, find c1, ..., c6)
such that

V (x)− (x2
1 + x2

2 + x2
3) is SOS,

(x2
3 + 1)

(
− ∂V

∂x1
ẋ1 − ∂V

∂x2
ẋ2 − ∂V

∂x3
ẋ3

)
is SOS.

In this example, SOSTOOLS returns V (x) = 5.5489x2
1 + 4.1068x2

2 + 1.7945x2
3

as a Lyapunov function that proves the stability of the system.

3.2 Parametric Robustness Analysis

When the vector field of the system is uncertain, e.g., dependent on some un-
known but bounded parameters p, robust stability analysis can be performed
by finding a parameter dependent Lyapunov function, which serves as a Lya-
punov function for the system for all possible parameter values. Details on
computation of such Lyapunov functions can be found in [15, 39].

We will illustrate such robustness analysis by considering the system:

d

dt

x1

x2

x3

 =

−p1 1 −1
2− 2p2 2 −1

3 1 −p1p2

x1

x2

x3

where p1 and p2 are parameters. The region in the parameter space (p1, p2)
for which stability is retained is shown in Figure 2. Operating conditions for
this system are p1 ∈ [p1, p1] and p2 ∈ [p2, p2], where pi, pi are real numbers
and pi ≤ pi. We capture this parameter set by constructing two inequalities:

a1(p) , (p1 − p1)(p1 − p1) ≤ 0

a2(p) , (p2 − p2)(p1 − p2) ≤ 0.

12 S. Prajna, A. Papachristodoulou, P. Seiler, P. A. Parrilo

We assume that the nominal parameter value is (2.7, 7), which is the center of
the rectangular regions shown in Figure 2. The robust stability of this system
will be verified by constructing a Lyapunov function. We look for a parameter
dependent Lyapunov function of the form V (x; p) that is bipartite: quadratic
in the state x and any order in p. To ensure that the two Lyapunov inequalities
are satisfied in the region of interest, we will adjoint the parameter constraint
ai(p) ≤ 0 multiplied by sum of squares multipliers qi,j(x; p) to the two Lya-
punov inequalities, using a technique that can be considered as an extension
of the S-procedure [40]. In this way, the search for a parameter dependent
Lyapunov function can be formulated as the following SOS program:

Find V (x; p), and qi,j(x, p),
such that

V (x; p)− ‖x‖2 +
2∑

j=1

q1,j(x; p)ai(p) is SOS,

− V̇ (x; p)− ‖x‖2 +
2∑

j=1

q2,j(x; p)ai(p) is SOS,

qi,j(x; p) is SOS, for i, j = 1, 2.

In this case, the Lyapunov function candidate V (x; p) and the sum of squares
multiplier qi,j(x, p)’s are linearly parameterized by some unknown coefficients,
which are the decision variables of our SOS program. We choose the qi,j(x, p)’s
to be bipartite sums of squares, quadratic in x and of appropriate order in p.

When the Lyapunov function V (x; p) is of degree zero in p, we can prove
stability for p1 ∈ [2.19, 3.21] and p2 ∈ [6.47, 7.53]. When V (x; p) is affine in p,
then we can prove stability for p1 ∈ [1.7, 3.7] and p2 ∈ [5.16, 8.84]. When it
is quadratic in p, we can prove stability for the maximum rectangular region
centered at the nominal parameter value, i.e., p1 ∈ [1.7, 3.7] and p2 ∈ [5, 9].
See Figure 2.

This example also illustrates the benefit of exploiting the bipartite struc-
ture. In the case of quadratic parameter dependence, if the bipartite structure
of the conditions is not taken into account then the dimension of the vector
Z(x; p) corresponding to a non-structured V (x; p) is 279; taking into account
the bipartite structure this number is reduced to 90.

3.3 Stability Analysis of Time-Delay systems

The stability analysis of time-delay systems, i.e., systems described by func-
tional differential equations (FDEs), can be done by constructing appropriate
Lyapunov certificates, which are in the form of functionals instead of the well
known Lyapunov functions that are used in the case of systems described
by ordinary differential equations (ODEs). This difference is due to the fact

SOSTOOLS and its Control Applications 13

0 1 2 3 4 5 6 7 8 9
2

3

4

5

6

7

8

9

10

p
1

p 2

Parameter region and stability certificates

V independent of p
V affine in p
V second order in p
Stability region

Fig. 2. The full stability region (shaded) and the regions for which stability can
be proven by constructing bipartite Lyapunov functions using SOSTOOLS. Bigger
regions require higher order certificates, which nonetheless can be easily computed
because of their structure.

that the state-space in the case of FDEs is the space of functions and not an
Euclidean space [7].

Consider a time delay system of the form:

ẋ = f(xt), (9)

where xt = x(t + θ), θ ∈ [−τ, 0] is the state. In order to obtain stability
conditions for this system, we use the Lyapunov-Krasovskii functional:

V (xt) = a0(x(t)) +
∫ 0

−τ

∫ 0

−τ

a1(θ, ξ, x(t), x(t + θ), x(t + ξ))dθdξ +

+
∫ 0

−τ

∫ t

t+θ

a2(x(ζ))dζdθ +
∫ 0

−τ

∫ t

t+ξ

a2(x(ζ))dζdξ (10)

where by a1(θ, ξ, x(t), x(t+θ), x(t+ξ)) we mean a polynomial in (θ, ξ, x(t), x(t+
θ), x(t + ξ)). In the case in which the time delay system is linear, of the form

ẋ(t) = A0x(t) + A1x(t− τ) = f(xt), (11)

the above functional (10) resembles closely the complete Lyapunov func-
tional presented in [6] and we can further restrict ourselves to specially struc-
tured kernels, i.e., the polynomial a1 need only be bipartite - quadratic in

14 S. Prajna, A. Papachristodoulou, P. Seiler, P. A. Parrilo

(x(t), x(t+θ), x(t+ ξ)) but any order in (θ, ξ). The polynomials a0 and a2 are
also quadratic in their arguments. There is also a symmetric structure that
should be taken into account:

a1(θ, ξ, x(t), x(t + θ), x(t + ξ)) = a1(ξ, θ, x(t), x(t + ξ), x(t + θ)).

Here we present the Lyapunov-Krasovskii conditions for stability for concrete-
ness:

Theorem 1 ([6]). The system described by Eq. (11) is asymptotically stable
if there exists a bounded quadratic Lyapunov functional V (xt) such that for
some ε > 0, it satisfies

V (xt) ≥ ε‖x(t)‖2 (12)

and its derivative along the system trajectory satisfies

V̇ (xt) ≤ −ε‖x(t)‖2. (13)

The Lyapunov-Krasovskii conditions for stability can be satisfied by im-
posing sums of squares conditions on the kernels of the corresponding con-
ditions. There are also extra constraints that have to be added, in the sense
that the kernels need to be non-negative only in the integration interval:

g1(θ) = θ(θ + τ) ≤ 0
g2(ξ) = ξ(ξ + τ) ≤ 0.

Such constraints can be adjoined to the Lyapunov conditions as in the previous
example. This yields the following SOS program:

Find polynomials a0(x(t)), a1(θ, ξ, x(t), x(t + θ), x(t + ξ)), a2(x(ζ)), ε > 0
and sums of squares qi,j(θ, ξ, x(t), x(t + θ), x(t + ξ)) for i, j = 1, 2
such that

a0(x(t))− ε‖x‖2 is SOS,

a1(θ, ξ, x(t), x(t + θ), x(t + ξ)) +
2∑

j=1

q1,jgj is SOS,

a2(x(ζ)) is SOS,

−

da0
dx(t)f(xt) + τ2 ∂a1

∂x(t)f(xt)− τ2 ∂a1
∂θ − τ2 ∂a1

∂ξ +
+τa1(0, ξ, x(t), x(t), x(t + ξ))− τa1(−τ, ξ, x(t), x(t− τ), x(t + ξ))+
+τa1(θ, 0, x(t), x(t + θ), x(t))− τa1(θ,−τ, x(t), x(t + θ), x(t− τ))+

+2τa2(x(t))− τa2(x(t + θ))− τa2(x(t + ξ))

+ . . .

− ε‖x‖2 +
2∑

j=1

q2,jgj is SOS.

The first three conditions guarantee positive definiteness of the functional (10)
and the last condition guarantees negative definiteness of its time derivative.

SOSTOOLS and its Control Applications 15

Order of polynomial a in θ and ξ 0 1 2 3 4 5 6

τ 4.472 4.973 5.421 5.682 5.837 5.993 6.028

Table 2. The maximum delay τmax for different degree polynomials a1 in θ and ξ
corresponding to the example in Section 3.3.

In order to keep the symmetric and sparse structure in the corresponding sum
of squares conditions we have to make a judicious choice for the multipliers
qi,j .

As an example, consider the following time delay system:

ẋ1(t) = −2x1(t)− x1(t− τ) , f1

ẋ2(t) = −0.9x2(t)− x1(t− τ)− x2(t− τ) , f2.

The system is asymptotically stable for τ ∈ [0, 6.17]. The best bound on τ
that can be obtained with a simple LMI condition is τ ∈ [0, 4.3588] in [16].
More complicated LMI conditions that yield better bounds and which are
based on a discretization procedure can be found in [6]. Using the Lyapunov
functional (10) we get the bounds given in Table 2, where we see that as the
order of a with respect to θ and ξ is increased, better bounds are obtained
that approach the analytical one.

The symmetric structure and sparsity of the kernels should be taken into
account in the construction of the functionals, as this not only reduces the size
of the corresponding semidefinite programs but also removes numerical errors.
This can be done using the ’sparsemultipartite’ feature in SOSTOOLS.
The construction of Lyapunov functionals can also be extended to uncertain
nonlinear systems where delay-dependent and delay-independent conditions
can be obtained in a similar manner [14].

3.4 Safety Verification

Complex behaviors that can be exhibited by modern engineering systems make
the safety verification of such systems both critical and challenging. It is often
not enough to design a system to be stable, but a certain bad region in the
state space must be completely avoided. Safety verification or reachability
analysis aims to show that starting at some initial conditions, a system cannot
evolve to an unsafe region in the state space. Here we will show how safety
verification can be performed by solving an SOS program, based on what is
termed barrier certificates. See [22] for detailed discussions and extensions.

For example, let us consider the system (from [22]),

ẋ1 = x2,

ẋ2 = −x1 +
1
3
x3

1 − x2,

16 S. Prajna, A. Papachristodoulou, P. Seiler, P. A. Parrilo

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Example 1

Fig. 3. Phase portrait of the system in Section 3.4. Solid patches are (from the left)
Xu and X0, respectively. Dashed curves are the zero level set of B(x), whereas solid
curves are some trajectories of the system.

whose safety we want to verify, with initial set X0 = {x : gX0(x) = (x1−1.5)2+
x2

2−0.25 ≤ 0} and unsafe set Xu = {x : gXu(x) = (x1+1)2+(x2+1)2−0.16 ≤
0}. Here we will find a barrier certificate B(x) which satisfy the following three
conditions: B(x) < 0 ∀x ∈ X0, B(x) > 0 ∀x ∈ Xu, and ∂B

∂x1
ẋ1 + ∂B

∂x2
ẋ2 ≤ 0.

It is clear that the existence of such a function guarantees the safety of the
system, and the zero level set of B(x) will separate an unsafe region from all
system trajectories starting from a given set of initial conditions. By using the
higher degree S-procedure and replacing nonnegativity by SOS conditions, we
can formulate the following SOS program:

Find B(x), and σi(x),
such that −B(x)− 0.1 + σ1(x)gX0(x) is SOS,

B(x)− 0.1 + σ2(x)gXu(x) is SOS,

− ∂B

∂x1
ẋ1 +

∂B

∂x2
ẋ2 is SOS,

σi(x) is SOS, for i = 1, 2.

In this example, we are able to find a quartic barrier certificate B(x) proving
the safety of the system, whose zero level set is shown in Figure 3.

SOSTOOLS and its Control Applications 17

3.5 Nonlinear Controller Synthesis

For a system ẋ = f(x) + g(x)u, where f(x) and g(x) are polynomials, appli-
cation of the SOS technique to the state feedback synthesis problem amounts
to finding a polynomial state feedback law u = k(x) and a polynomial Lya-
punov function V (x) such that V (x) − φ(x) and −∂V

∂x (f(x) + g(x)k(x)) are
sums of squares, for some positive definite φ(x). Yet the set of V (x) and k(x)
satisfying these conditions is not jointly convex, and hence a simultaneous
search for such V (x) and k(x) is hard — it is equivalent to solving some bilin-
ear matrix inequalities (BMIs). Because of this, a dual approach to the state
feedback synthesis based on density functions [29] has also been proposed,
which has a better convexity property. The idea in this case is to find a den-
sity function ρ(x) and a controller k(x) such that ρ(x)f(x)/|x| is integrable
on {x ∈ Rn : |x| ≥ 1} and

[∇ · (ρ(f + gk)](x) > 0 for almost all x. (14)

If such ρ(x) and k(x) can be found, then for almost all initial states x(0) the
trajectory x(t) of the closed-loop system exists for t ∈ [0,∞) and tends to
zero as t → ∞. See [28] for details. It is interesting to note that even if the
system is not asymptotically stabilizable, it is sometimes possible to design a
controller which makes the zero equilibrium almost globally attractive.

Consider for example the system (taken from [28]).

ẋ1 = −6x1x
2
2 − x2

1x2 + 2x3
2,

ẋ2 = x2u,

whose zero equilibrium is not asymptotically stabilizable, since any state with
x2 = 0 is necessarily an equilibrium. Using the following parameterization

ρ(x) =
a(x)

(x2
1 + x2

2)α
; ρ(x)k(x) =

c(x)
(x2

1 + x2
2)α

,

the positivity of ρ(x) and the divergence condition (14) can be formulated as
the following SOS program:

Find a(x) and c(x),
such that

a(x)− 1 is SOS,

[b∇ · (fa + gc)− α∇b · (fa + gc)](x) is SOS,

where b(x) = x2
1 +x2

2. For α = 3, we find that the SOS conditions are fulfilled
for a(x) = 1 and c(x) = 2.229x2

1−4.8553x2
2. Since the integrability condition is

also satisfied, we conclude that the controller u(x) = c(x)
a(x) = 2.229x2

1−4.8553x2
2

renders the origin almost globally attractive. The phase portrait of the closed
loop system is shown in Figure 4.

18 S. Prajna, A. Papachristodoulou, P. Seiler, P. A. Parrilo

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x 2

Fig. 4. Phase portrait of the closed-loop system in Section 3.5. Solid curves are
trajectories; dashed line is the set of equilibria.

4 Conclusions

In this chapter we have presented some of the features of SOSTOOLS, a
free MATLAB toolbox for formulating and solving SOS programs. We have
shown how it can be used to solve some control problems, such as nonlinear
stability analysis, parametric robustness analysis, stability analysis of time-
delay systems, safety verification, and nonlinear controller synthesis. Future
improvements to SOSTOOLS will incorporate symmetry reduction and SOS
over quotients, e.g., to handle the case where an SOS decomposition is sought
for a polynomial p(x) that is invariant under the action of a finite group.

References

1. M. D. Choi, T. Y. Lam, and B. Reznick. Sum of squares of real polynomials.
Proceedings of Symposia in Pure Mathematics, 58(2):103–126, 1995.

2. A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri. Distinguishing separable
and entangled states. Physical Review Letters, 88(18), 2002.

3. K. Fukuda. CDD/CDD+ reference manual, 2003. Available at
http://www.ifor.math.ethz.ch/staff/fukuda.

4. K. Gaterman and P. A. Parrilo. Symmetry groups, semidefinite programs, and
sums of squares. To appear in Journal of Pure and Appl. Algebra, 2004.

5. A. A. Goldstein and J. F. Price. On descent from local minima. Mathematics
of Computation, 25:569–574, 1971.

SOSTOOLS and its Control Applications 19

6. K. Gu, V. L. Kharitonov, and J. Chen. Stability of Time-Delay systems,
Birkhäuser, 2003.

7. J. K. Hale and S. M. Verduyn Lunel. Introduction to Functional Differential
Equations, Applied Mathematical Sciences (99), Springer-Velag, 1993.

8. D. Henrion and J. B. Lasserre. GloptiPoly: Global optimization
over polynomials with Matlab and SeDuMi. In ACM Transac-
tions on Mathematical Software, (29(2):165–194, 2003. Available at
http://www.laas.fr/~henrion/software/gloptipoly.

9. Z. Jarvis-Wloszek, R. Feeley, W. Tan, K. Sun, and A. Packard. Some controls
applications of sum of squares programming. In Proceedings of IEEE Conference
on Decision and Control, 2003.

10. H. K. Khalil. Nonlinear Systems. Prentice Hall, Inc., second edition, 1996.
11. J. B. Lasserre. Global optimization with polynomials and the problem of mo-

ments. SIAM Journal on Optimization, 11(3):796–817, 2001.
12. K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and

nonlinear programming. Mathematical Programming, 39:117–129, 1987.
13. Y. Nesterov. Squared functional systems and optimization problems. In

J. Frenk, C. Roos, T. Terlaky, and S. Zhang, editors, High Performance Op-
timization, pages 405–440. Kluwer Academic Publishers, 2000.

14. A. Papachristodoulou. Analysis of nonlinear time delay systems using the sum
of squares decomposition. In Proceedings of the American Control Conference,
2004.

15. A. Papachristodoulou and S. Prajna. On the construction of Lyapunov functions
using the sum of squares decomposition. In Proceedings of IEEE Conference on
Decision and Control, 2002.

16. P. G. Park. A delay-dependent stability criterion for systems with uncertain
time-invariant delays. IEEE Transactions on Automatic Control, 44(2):876–
877, 1999.

17. P. A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry
Methods in Robustness and Optimization. PhD thesis, California Institute of
Technology, Pasadena, CA, 2000.

18. P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems.
Mathematical Programming Series B, 96(2):293–320, 2003.

19. P. A. Parrilo and R. Peretz. An inequality for circle packings proved by semidefi-
nite programming. Discrete and Computational Geometry, 31(3):357–367, 2004.

20. V. Powers and T. Wörmann. An algorithm for sums of squares of real polyno-
mials. Journal of Pure and Applied Linear Algebra, 127:99–104, 1998.

21. S. Prajna. Barrier certificates for nonlinear model validation. In Proceedings of
IEEE Conference on Decision and Control, 2003.

22. S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using barrier
certificates. In Hybrid Systems: Computation and Control, pages 477 – 492.
Springer-Verlag, 2004.

23. S. Prajna and A. Papachristodoulou. Analysis of switched and hybrid systems
– Beyond piecewise quadratic methods. In Proceedings of the American Control
Conference, 2003.

24. S. Prajna, A. Papachristodoulou, and P. A. Parrilo. Introducing SOSTOOLS:
A general purpose sum of squares programming solver. In Proceedings of IEEE
Conference on Decision and Control, 2002.

20 S. Prajna, A. Papachristodoulou, P. Seiler, P. A. Parrilo

25. S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. SOS-
TOOLS – Sum of Squares Optimization Toolbox, User’s Guide, Ver-
sion 2.00. Available at http://www.cds.caltech.edu/sostools and
http://control.ee.ethz.ch/~parrilo/sostools, 2004.

26. S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. New developments
in sum of squares optimization and SOSTOOLS. In Proceedings of the American
Control Conference, 2004.

27. S. Prajna, A. Papachristodoulou, and F. Wu. Nonlinear control synthesis by
sum of squares optimization: A Lyapunov-based approach. In Proceedings of
Asian Control Conference, 2004.

28. S. Prajna, P. A. Parrilo, and A. Rantzer. Nonlinear control synthesis by convex
optimization. IEEE Transactions on Automatic Control, 49(2):310–314, 2004.

29. A. Rantzer. A dual to Lyapunov’s stability theorem. Systems & Control Letters,
42(3):161–168, 2001.

30. B. Reznick. Extremal PSD forms with few terms. Duke Mathematical Journal,
45(2):363–374, 1978.

31. B. Reznick. Some concrete aspects of Hilbert’s 17th problem. In Contemporary
Mathematics, volume 253, pages 251–272. American Mathematical Society, 2000.

32. K. Schmüdgen. The k-moment problem for compact semialgebraic sets. Math-
ematische Annalen, 289:203–206, 1991.

33. P. Seiler. Stability region estimates for SDRE controlled systems using sum of
squares optimization. In Proceedings of the American Control Conference, 2003.

34. N. Z. Shor. Class of global minimum bounds of polynomial functions. Cyber-
netics, 23(6):731–734, 1987.

35. J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11–12:625–653, 1999.
Available at http://fewcal.kub.nl/sturm/software/sedumi.html.

36. B. Sturmfels. Polynomial equations and convex polytopes. American Mathe-
matical Monthly, 105(10):907–922, 1998.

37. K. C. Toh, R. H. Tütüncü, and M. J. Todd. SDPT3 - a MATLAB soft-
ware package for semidefinite-quadratic-linear programming. Available at
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.

38. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,
38(1):49–95, 1996.

39. F. Wu and S. Prajna. A new solution approach to polynomial LPV system
analysis and synthesis. In Proceedings of the American Control Conference,
2004.

40. V. A. Yakubovich. S-procedure in nonlinear control theory. Vestnik Leningrad
University, 4(1):73–93, 1977. English translation.

