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Statistical Physics and
emergence of collective behavior

VOLUME 75, NUMBER 6 PHYSICAL REVIEW LETTERS 7 AucusTt 107

Novel Type of Phase Transition in a System of Self-Driven Pa>"~

Tamaés Vicsek,'? Andras Czirék,! Eshel Ben-Jacob,? Inon Cob-
tDepariment of Atomic Physics, Edwvds University, Budape-

28 Sepruviber 2000 [nternational weekly journal of sciesce

| NNATUIC

|l-|-||'ll' fteven Strogats

A. Jadbabaie “Distributed Coordination Protocols: From Flocking and Synchronization to Coverage in Sensor Networks






Overview
N e

, Nonlinear/uncertain Complex
hybrid/stochastic etc. networked
Comg{exity Single 2 systems
dynamics Agent
o

Flocking/synchronization
consensus

Multi-agent
systems

Complexity
of interconnection

A. Jadbabaie “Distributed Coordination Protocols: From Flocking and Synchronization to Coverage in Sensor Networks



* How can a group of moving agents collectively decide on
direction, based on nearest neighbor interaction?

neighbors o
agent |

agent i

How does global behavior emerge from local interactions?
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Distributed consensus algorithm for
kinematic agents

MAIN QUESTION : under what conditions do all headings

converge to the same value and agents reach a consensus on where to go?

(ZjENi(k) SiIl 93' (k)) —+- SiIl 93 (k)
(ZjeNé(k) cos 8;(k)) + cos 6;(k)

1
For small angles < 0i(k) >,— ( E 0;(k)+ 0:(k))
di(k) +1°
jENi(k)

0;(k+1) =< 0;(k) >,.= atan
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Multi-agent Representations: Proximity Graphs

We use graphs to model neighboring relations e...
G ={v.e.W) »

@ V: A set of vertices indexed by the set of
mobile agents.

@ E: A set of edges the represent the
neighboring relations.

@ W: A set of weights over the set of edges.

Agent i's neighborhood  N; = {jl|i ~ j}

The neighboring relation is represented by a fixed graph
G, or a collection of graphs G,, G,,...G,,
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The Laplacian of the graph

B is the (nx e) [/ 1 0 0 O \\ .

incidence matrixof 5 _ | -1 1 0 -1/ el

graph G. | O -1 1 O |
V0o 0 -1 1 /) 4§ %3

@ The graph Laplacian (n x n) encodes structural properties of the graph
L = BBT Ly = BWBT W is diagonal
@ Some properties of the Laplacian:

@ It is positive semi-definite

@ The multiplicity of the zero eigenvalue is the number of connected
components

@ The kernel (for connected graph) is the span of vector of ones,
Lv=0 — ve€span{l}
@ First nonzero eigenvalue is called algebraic connectivity.

@ Its corresponding eigenvector, called the Fiedler vector. Its sign paper
encodes a lot of information about “bottlenecks” and “cutpoints”

A. Jadbabaie “Distributed Coordination Protocols: From Flocking and Synchronization to Coverage in Sensor Networks



@ The underlying proximity graph

@ We use graphs to represent
neighboring relations G = {V, £}
@ vertices: ) — {1,...,6}
@ edges: ¢ = ((1,2),(2,3),(3,4),

o :10,1,...} = P switching signal ,

P finite set of indices corresponding to alll | |
graphs over n vertices. A,, adjacency matrix
Fp:=(Dp+ 1)~ (Ap+ 1), p€P,
’ o o f) ! Dy, Valence matrix
5= [ bh O - On } Ok + 1) = Fou)0(k)
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2 Necessary and sufficient condition for convergence of

oy products of stochastic matrices

Theorem (Wolfowitz '63, Daubechies & Lagarias 92, '01)
All infinite products of stochastic matrices chosen from a finite
set> = {7/, ---. [, }converge to a rank-one matrix

lcfor some row vectorc, if and only if:

CAll fidite products £, F}, - -+ F;, Vk > 0 of all lengths are
ergodic matrices, where [ € X, j ={l,---.m}

Finite product ergodicity 4mmp Ergodicity of 3
@ Complexity: decidable but PSPACE-Complete (Hernek’95).

@ The necessary and sufficient condition does not provide an effective
computation scheme. Need to exploit the problem structure.

@ Products of ergodic matrices is not necessarily ergodic.
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Ng® n
Conditions for reaching consensus

Theorem (Tsitsiklis’84, Jadbabaie et al. 2003): If there is a
sequence of bounded, non-overlapping time intervals T,, such
that over any interval of length T,, the network of agents is
“Jointly connected ”, then all agents will reach consensus on their
velocity vectors.

This happens to be both necessary and sufficient for
exponential coordination, boundedness of intervals not
required for asymptotic coordination. (see Moreau '04)
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Consensus in random networks

Fpo:=(Dp+ 1) (4 + 1), peP,
(92:[91 0y --- 0, y 9(k+1):Fg(k)9(k)

c:10,1,...} =P is arandom switching signal

Theorem : Assuming graphs are randomly chosen and
Independent, reaching consensus is a trivial event, i.e.,
either it happens almost surely or almost never, i.e., it
satisfies the Kolmogorov 0-1 law.

Theorem: necessary and sufficient condition for almost
sure convergence is A\2(E(F)) < 1 |i.e., the average
matrix needs to be ergodic.
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m N N N
Consensus in Continuous time

0(t) = —(Dyy+ D) (Do) —Ag())0®) 1= —(Dy(ry+1) ™ Ly 0(t)

As before, o(t) is a piecewise constant switching signal
The model is now a hybrid or switching dynamical system

Need to assume a dwell time on each graph to avoid
complications

@ The result is virtually the same, as exponentials of Laplacians
are stochastic matrices
lemma If {Gp,, Gps,...,Gp,,} is a jointly
connected collection of graphs with Laplacians
LpysLps,..., Ly, then

m
(] kernel Ly, = span {1}. (1)
i=1

Later on go from graphs to simplicial complexes and use this to verify coverage
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Flocking, artificial life, and

computer graphics

@ Reynolds [Reynolds 87] named the autonomous
systems that behave like members of animal groups
boids (bird + oids)

@ He developed a descriptive model for flocking
behavior based on the combined action of
alignment and cohesion-separation forces

}i)g b) alignment: steer towards the average heading of flockmates

\N

4
%/ separation: steer to avoid crowding flockmates
A

o ?fn | cohesion: steer towards the average position of flockmates
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Distributed coordination with dynamic

=" models:

@ Double integrator model
T = U

V; — U; — ay 873 j
@ Neighbors of i distance
dependent:

N; C{1,...,N}
@ Cohesion/Separation

a—?&%LGHrﬁH

9 Allgnment J€
= —k ) (v;— V;)
jEN; x
For dynamic models, Proximity graph Connectivity implies
emergence of Collective motion (Tanner, Jadbabaie, Pappas)
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Synchronization of coupled oscillators

@ Kuramoto model with long-range interaction
. K X
0;,(t) = w; + N Zl Siﬂ(@j — 0;)

j:

@ Toy model for pacemaker cells in the heart and nervous
system, collective synchronization of pancreatic beta cells,
synchronously flashing fire flies, gait generation for bipedal
robots (Klavins and Koditschek’02). :

@ Benchmark problem in physics
@ Not very well understood
over arbitrary networks
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Kuramoto model

=" Qver arbitra

Only neighboring oscillators contribute to the sum

D cin
1 DIl

( T 0\
I\_L) U/

|

€

|
2=

) K _
Qi:wi_ﬁ Z Sln(Oi—Oj)
JEN;

B Is the Incidence matrix

Bsin(B19) = BW(0)B'0
W (0) = diag([sin(B*0)1/(B16)1---sin(BY0)e/(B"0)c])

Theorem: For arbitrary connected networks, connectivity
Implies local stability of the synchronized state. Rate of
convergence determined by ““algebraic connectivity”, the
first non-zero eigenvalue of the graph Laplacian.
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Properties of the model

@ When 0=0, 0 = 0ss1 is an asymptotically stable fixed
Int.

N
r(Y= 51 - cos(8) +jsin@) = () (NI~ Lo
1=1

N2 —2¢ 4+ 21T cos(BT0)
N2

r(t) is the order parameter, or measure of synchrony

@ U:= N2(1—r2) = [/]*L[e’] is a Lyapunov function,
measuring asynchrony.

: : 2 .p.
U@)=vU()d =—-———0"0<0.
(6) = VU(8)6 = —- =676 <

A,(L) determines the speed of synchronization
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A Special Case

0 € Null{Ly} = span{l}
For |0i|<n/2 for a connected graph, all trajectories will converge to S

S = {67, ‘ éz — é]a 9%7&3}

Therefore, all velocity vectors will synchronize.

But, this stability result is not global. In the case of
the ring topology 6 € span{1} is notthe only
equilibrium. This is due to the fact that B and B'
have the same null space! 0. 0. — 21

IS also stable: t YY) T N

Fixed points: ) < span{l}, Bl c Span{l}
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Kuramoto model w/ non identical
N S

oscillators

@ When the frequencies are non zero, there is no fixed point
for small values of coupling.

@ Theorem: Bounds on the critical value of the coupling can be
determined by maximum deviation of frequencies from the
mean, and algebraic connectivity of the graph.

||w_‘:)1||2 K > @
K > oL ave = 3o (L)

A L Trt — o1]l2
L max<><rg\/1_w w_ |yl = o103
N K2

i 2
@ When o is random, r < V/l _Ir(L)o
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Kuramoto model w/ non identical
N >

oscillators

@ When the frequencies are non zero, there is no fixed point
for small values of coupling.

@ There is no partial synchronization for fixed values of initial
frequencies for small K.

@ Theorem: Bounds on the critical value of the coupling can be
determined by maximum deviation of frequencies from the
mean, and algebraic connectivity of the graph.

> ||7~U—‘:’1||2
K 255m

A L Trt — o1]l2
\/1_ max()<r<\/l_’w w 1_||w wl|[5
N K

C 5?\2@) D)

@ When o is random, . o /{ _ Tr(L)o?
\/ L
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Average order parameter vs. K for
N= 100,e= 2443

1 T T T T L s Aﬁ::::¢¢¢¢¢¢¢¢::¢::¢:::::¢:=¢¢
- Critical "
s pst  couping”
i) :
5 5
O o | | B ]
D £ ook ‘ ‘ ‘ ‘ ‘ ‘ ‘
E =
g GL) i3
D_ o) 0.85 i'
5 O I Bound on
© il
g > ol critical coupling
o 1
> '
© i
0.75F ' !w:“ ' |
Tl T
| l!!EE!I!!H
T
ssssassﬁiﬁiﬁllil ‘
0.7 (I) é 1I0 1I5 2IO 2I5 3IO 3I5 4IO 4I5 5I0

Coupling strength K
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Dual decomposition and nonlinear
N ez

network flow

@ Want to globally minimize 1-r? over the whole network

@ Letz=sin(B' ¢) min 3 (1 — /1 - 2)=e
Zj 1

j:

_ w
Subjectto: Bz = N— :=(8) |potentials

1ot cos(B10)

Sum of pair-wise

Supply at eachNnode

(&
Lagrangian L(z,v) = Z 1—y/1- 232 — (VTB)ij + 231 V;iSi
= v 1=
g(v) =inf, L(z,v) i _ = Av; = tan(B70) ;A
1—2*
J
© 1 N Kuramoto model is the Subgradient
g(Av) = > 1- + ) ysy ) :
= \/1 n AVJZ = algorithm for solving the dual

vi(k +1) = v (k) — )
lEN,
Subgradient algorithm

+ s, Shor 87, Tsitsiklis ‘86

sin(6; — 6;)

A. Jadbabaie “Distributed Coordination Protocols: From Flocking and Synchronization to Coverage in Sensor Networks



mym
From synchronization to distributed alignment

@ Velocity vector v, of agent i is a unit vector
along the z-axis of the body frame.

v = Ries  R; = [Ry, Rzy R;,]
@ Full Kinematics equation:
. 0 - w
pi = Y W; = [wg 0 —ﬁjj

@ w;isthe body angular velocity.

@ Thereduced kinematics becomes:

Vs
[

LS.

v, = —wipRiy + wiy Ry
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s 0

%aY  Distributed velocity alignment in 3D
s

Theorem: Consider the system of N kinematic agents

’)7- p— D —I— (1 p
Y W/LwJ. uzy I wzy; v

If the proximity graph of the agents is connected over time, and all initial
velocity vectors are in a hemisphere, applying the control law

= Z”UiX’Uj

will result in asymptotic velocity alignment JEN;

—@—Proof:
@ all trajectories converge to the
equilibria given by o, = 0.
@ A hemisphere is positively invariant
under our control law.

@ The consensus set is the
equilibrium set in the hemisphere.

@ Note that application of LaSalle to
switched graph case is “tricky”
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Beyond Graphs in Networked Systems

@ Spectral graph theory helps us quantify properties of
networked systems

@ For certain problems, e.g. coverage, makes sense to go
beyond graphs and pair-wise interactions

@ Example: Given a set of sensor nodes in a given domain
(possibly bounded by a fence), is every point of the domain
under surveillance by at least one node?




From Graphs to Simplicial Complexes

@ Simplicial Complex: A finite
collection of simplices

@ Simplex: Given V, an e I
unordered non-repeating
subset A .

@ k-simplex: The number of A L

points is k+1
@ Faces: All (k-1)-simplices in
the k-simplex

@ Orientation
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From Graphs to Simplicial Complexes

@ Simplicial complex: made up of simplices of several
dimensions

@ Properties

@ Whenever a simplex lies in the collection then so does each of its
faces

@ Whenever two simplices intersect, they do so in a common face.

@ Valid Examples

@ Graphs
@ Triangulations
Invalid examples
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Rips-Vietoris Simplicial Complex

@ O-simplices : Nodes

@ 1-simplices : Edges

@ 2-simplices: A triangle in
the connectivity graph ~ 2-
simplex (Fill in with a face)

@ K-simplices: a complete
subgraph on k+1 vertices

@ k-simplex in the Rips
complex ~ (k+1) points
within communication range
of each other
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s 0

%o Boundary Maps

N >

@ Let C;(X) be the vector space whose basis is the set of oriented k-simplices
of X

@ The boundary map 9k : Cx — Ck_1 is the linear transformation

1 1

\ rc_ n. = ny. . . nv-.l
+) LY0y ey Vo—1 Yg41s-- > VLl

@
O2[vo, v1,v2] = [v1,v2] — [vg, v2] + [vo, vi]
@ Kk-cycles: Zp(X) =ker(0 : Cr, — Cr_1)
@ k-boundaries: By (X) =im(dg+1 : Crt1 — Ci)
- :
Note O), 0 O = O

Homology groups : H (X)) = Z, (X) / B, (X)
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s 0

e, Combinatorial k-Laplacians

@ Since X is finite we can represent the boundary maps in matrix form

e%..m -1 0 1 |
v0e J61 "9 =B=1] 1 —1 0
%CWQ \ | O 1 —1 |

incidence matrix

@ Moreover, we can get the adjoint .
O), : Cp—1(X) — Cp(X)

@ [Eckmann 1945] The Combinatorial k-Laplacian Ay, : C.(X) — Ci(X)is
given by
Ay = 4109541 + 030k

@ Note: AO _ BBT — 7
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k-Laplacian at the Simplex Level

@ Adjacency of a simplex to other simplices

@ Upper adjacency if they share a higher simplex (e.g. 2
nodes connected by an edge) a; ~ 7;

@ Lower adjacency if they share a common lower simplex
(e.g. two edges share a node) o; — o

@ ‘Local’ formula with orientations €;; € {—1,1}

Li(oi) = (deg,(0:) +k+1)oi+ > €05— Y EimOnm

e g AT g
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o .
Homology classes from k-Laplacians

@ The harmonic k-cycles are given by (Hodge theorem)

Hp(X) ={c€ Cp(X) | Apec =10}
@ We now have a decomposition into orthogonal subspaces
Cp(X) = Hi(X) @ im(0g11) ® im(y)

@ The Laplacian operator is invariant on each subspace and

positive definite on im(8,11), IM(3;) (i.e. on H(X)™)
@ Unique harmonic cycle for each homology class

@ Kernel of the Laplacian ~ homology classes
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s 0

—&). Laplacian Flows

@ Laplacian flows : a semi-stable dynamical system

Gf—“’ = Aww. k>0
(Recall heat equation for k = 0) iq y'; o N\
S Ny
@ [Muhammad-Egerstedt MTNS'06]

System is asymptotically
stable if and only if
rank(H, (X)) = 0.

@ A method to detect
'no holes’ locally
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@ System converges to
the unique harmonic cycle
if rank(H, (X)) = 1.

@ A method to detect
‘proximity to hole’ locally
when single hole

@ When rank(H, (X)) > 1 :
System converges to the span of harmonic homology cycles
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S L]
Work in Progress ....

@ Distinguish between multiple homology classes by
decentralized eigenvector decomposition of k-Laplacian
(Kempe's algorithm)

@ Quantify ‘proximity to holes’

@ Quantify fragilities in network : near-harmonic cycles (Fiedler
like characterization such as cutpoints for holes?)

@ Switching k-Laplacians and ‘wandering holes’
@ A “spectral theory” for simplicial complexes?

A. Jadbabaie “Distributed Coordination Protocols: From Flocking and Synchronization to Coverage in Sensor Networks



s 0

—&. Example, eigenvectors of L,

o A
Ne-__,,ﬁ:k
’ —

Network

2nd homology class ‘Fiedler-like’- eigenvector
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Ongoing work: detection of wandering
holes in coverag

V. De Silva and R Ghrist, “Homological Sensor Networks”

@ Given a set of sensors with a disk footprint, add:
@ an edge when 2 sensors overlap. A face when 3 sensors overlap
@ Construct the 18t Laplacian L,

i=-L3Y2(t) o:.{0,1,..} =P
Rips complex is “jointly connected over time” intersection of kernels

of Laplacians is zero no wandering hole in coverage
The dynamical system (which is distributed) converges to zero

Instead of Spectral Graph theory look at spectral theory of simplicial complexes

A. Jadbabaie “Distributed Coordination Protocols: From Flocking and Synchronization to Coverage in Sensor Networks



Networked dynamical systems

Complexity
of
dynamics

, Nonlinear/uncertain Complex

hybrid/stochastic etc. networked
% systems

Optimal control of
spatially distributed systems

Flocking/synchronization
Consensus/covg

Viulti-agent
systems

Complexity
of interconnection

A. Jadbabaie “Distributed Coordination Protocols: From Flocking and Synchronization to Coverage in Sensor Networks



Results on Spatially invariant systems

and distributed control

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 7, TULY 2002

1091

Distributed Control of Spatially Invariant Systems

Bassam Banueh, Member; IEEE, Fernando Paganini, Member, IEEE. and Munther A Dahleh, Fellow, IEEE

1478 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 48, NO_$, SEPTEMBER. 2003

Distributed Control Design for Spatially
Interconnected Systems

TEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 12, DECEMBER 2004 2113

Distributed Control of Heterogeneous Systems

Geir E. Dullerud and Raffacllo D’ Andrea

—» Mosﬂy over highly symmetric graphs w/ identical

IEEE T

dynamucs

“» Infinite Horizon Quadratic Cost
—» No constraints on inputs and states

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 9, SEFTEMBER 2004

Distributed Control Design for Systems
Interconnected Over an Arbitrary Graph

Cédric Langbort, Ramu Sharat Chandra, and Raffacllo D’ Andrea, Senior Member, IEEE

1446 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 9, SEFTEMBER. 2004

Distributed Control of Systems Over Discrete Groups

Benjamin Recht, Student Member, IEEE, and Raffacllo D’ Andrea, Senior Member, IEEE

lbr ci—This paper dis l l ibu («l ontroller design  would fall into this category. However, there are many spatially
and

analysis for  distri | 1te | sys l with | itrary  diserete ipvariant Dlﬁ urations such as those arising from crystalline
show fur(

On the Ill-Posedness of Certain Vehicular Platoon
Control Problems

Mihailo R. Jovanovi¢, Member, IEEE, and Bassam Bamich, Senior Member, [EEE

Abstract—We revisit the vehicular platoon control problems for-  consider the infinite platoon case as an insightful limit which
mulated by Levine and Athans and Melzer and Kuo. We show that  cap be treated analvtically. We argue that the infinite platoons

274 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 2. FEBRUARY 2006

A Characterization of Convex Problems in —
Decentralized Control™®

Michael Rotkowitz and Sanjay Lall

Ahcivact Wa concidar thae nrchlorns of comnctrarcting amtitmal  trranild lilba 64 calua im Aacanfealizad canten] 1o t0 ayidiviira a I



Structure of optimal control for spatially
"

distributed systems: spatially invariant case

B> Model of each subsystem: L

X (’r+1)} {A BHX (T)} ot
Eq.(1) | ™ _ ‘ Pl
Q() |: Yk(T) C D Uk(T) P *

Does the optimal control policy have the same spatial structure as plant ?
In other words, is it spatially distributed ?

» Finite Horizon Optimal Control problem: J [

min J(x(0),u™) <«—— Finite Horizon Quadratic Cost
UN f

s.t. Eq.(1) for O<t<N
ul <u(t)<uf, for O<t<N,
Yin S V(1) £ Ymox for O<t<N,
keG
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1D Lattice: 5 & ® * s & & ..

Signals in the spatial domain: X=(--, Xy, Xy o Xy )
Fourier tfransform: X= -+ X 4 e + Xo T X e+ ..

For simplicity, replace 7z = ¢'¥

Fourier transform: )? = Z X, zK
keG

G : spatial domain
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v~y Translation Invariant Operators

A T

» Definition:.
> Translation Operator: T (-, | X o Xeyg 0 0 )=(-, | Xt o+ Xz 0 7 )

B N e +ranclatinn invaniant ansratan i€ T ON_C\T

Consider translation invariant operators of this form

k
QM =2 QT
keG
agent k is coupiea 10 115 neignoors through cost function J

e
~ S

J=-+X QX +X QX +X, QX+

= (x,Q(T)x)
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Decay Property of Translation Invariant Operators

A T

T = Tk () — K_ 1
Q(T) keZéQk Q(z) kZaQ*z d(z)N(z)

Fact 1: Analytic continuity implies decay in spatial domain.
> Anha yT|cycon’rc|;nU|‘ry Y imp Y nsp

Fact 2: The decay rate depends on the distance of the
closest pole to the unit circle; the further,
the faster.

Sl (_//ﬁ,_‘“
: Kjl Re(2) \&/j Re(z) 10 1 k

No pole on S' = No pole inan arlmulus Coefficients decay

A. Jadbabaie “Distributed Coordination Protocols: From Flocking and Synchronization to Coverage in Sensor Networks



» Model of each subsystem: |:xk(1—+1)} {A Bi||:xk(-|-):|

C Dj|u(t)

» Notation: X()=(-, x, (1), %, (1), )

u(t)=(---,u (1), u.(1),-)

uN :(...,uE 'uEH,...)

UE — ( Uk(O),Uk(l), Ty Uk(N _1))*
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Spatial Locality of Centralized RHC

Y B
» Finite Horizon Quadratic Cost:

J(x(0),u™) = (x(N),P(T)x(N)) + NZ;<x(’r),Q(T)x(‘r)> +(u(t),R(THu())

» P(T) can be obtained from a parameterized family of DAREs:
A"P(2)A-P(2)-A" P(2)B(R(z) +B"P(2)B) B P(2)A + Q(z)=0
forall zeS!.

» P(T) is spatially decaying:

P(M=>RT" —— |R|=<ce® forsome c,p>0
keG
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Spa’rlal Locality of the Optimal Solution

Theorem: Given the initial condition x(0), the optimal solutions are :

(1) Affine maps of x(0), i.e., ul ="K, x,(0) +¢

jeG

(2) Spatially distributed, ie., |K;| <ae®'!

for some a,p >0.
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Generalization to Arbitrary Graphs
&

Analytic continuity —_— Exponential decay in spatial domain

Q. coupling between agent k and i

Multiply by €
where 1< T <b

Q ——— Q=Q, T

Q- Q. Q= Q,

Suppose that Q If Q is bounded,
is bounded. then we say that Q

. . is exponentially spatially
Note: SD stands for Spatially Decaying ,
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Extending analytic continuity

Multiply by C
Im where 1-r< (<l+r

Q is spatially decaying.

If YIQL,TM<0o —0 Cf)(i)zkzerik is

on the annulus.
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Systems with Arbitrary Couplings
Vs

over Arbitrary Graphs
Multiply by y(dis(k,i))

Q — Q, = Q, y(dis(k,i))

Three important class of problems with spatially-varying couplings:

e TOR w(s)”
0 s 0 S 0 S
(1) Systems with nearest (2) Systems with (3) Systems with
neighbor coupling: exponentially algebraically
1 if [s|=d decaying Tgluplings: decaying coupling:
W)= 4 if |s|>d y(s) = y(s)=(1+alsly
A~ () with >1 with a, p>0
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Properties of SD operators
&5

Definition: Suppose Q is bounded and the coupling— characteristic

function y :R" —[1,0)is given. If C3 is bounded, then
we say that Q is SD.

Theorem: sums, products and inverses of SD operators are SD.

Therefore, if Aand B, Q, and R are SD
(1) Solution P of the Lyapunov Equation is SD:
A'PA-P+Q=0 , A P+PA+Q=0
(2) Solution of the Algebraic Riccati Equation is SD:
A"PA-P-A"PB(R+BPB)'B'PA+Q=0 (DARE)
A"P+PA-PBR'B'P+Q=0 (CARE)
(3) Solutions to finite horizon constrained quadratic
optimization problems are SD.
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Summary

Centralized solutions to finite and infinite
horizon optimal control problems for spatially g
distributed systems has an inherent spatial A

locality. :
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