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Statistical Physics and  Statistical Physics and  
emergence of collective behavioremergence of collective behavior

Simulations and conjectures but few “proofs’
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Working systems but few “proofs’
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r

agent i

neighbors of
agent i

MultiMulti--agent setting: agent setting: VicsekVicsek’’ss kinematic modelkinematic model

• How can a group of moving agents collectively decide on 
direction, based on nearest neighbor interaction? 

How does global behavior emerge from local interactions?
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= heading

= speed

MAIN QUESTION MAIN QUESTION :: Under what conditions do all headings 
converge to the same value and agents reach a consensus on where to go?

Distributed consensus algorithm for Distributed consensus algorithm for 
kinematic agentskinematic agents

For small angles
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MultiMulti--agent Representations: Proximity Graphsagent Representations: Proximity Graphs

We use graphs to model neighboring relations

V: A set of vertices indexed by the set of 
mobile agents.
E: A set of edges the represent the 
neighboring relations.
W: A set of weights over the set of edges. 

Agent i’s neighborhood

The neighboring relation is represented by a fixed graph
G, or a collection of graphs G1, G2,…Gm
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The Laplacian of the graphThe Laplacian of the graph

The graph Laplacian (n x n) encodes structural properties of the graph

Some properties of the Laplacian:
It is positive semi-definite
The multiplicity of the zero eigenvalue is the number of connected 
components
The kernel (for connected graph) is the span of vector of ones, 

First nonzero eigenvalue is called algebraic connectivity.
Its corresponding eigenvector, called the Fiedler vector. Its sign paper 
encodes a lot of information about “bottlenecks” and “cutpoints”

W is diagonal

B is the (n x e) 
incidence matrix of 
graph G.

1

2

34
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The underlying proximity graph The underlying proximity graph 

We use graphs to represent 
neighboring relations

vertices:
edges:

1

2

3
4

5

6

switching signal ,

adjacency matrix

Valence matrix

finite set of indices corresponding to all
graphs over n vertices.
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All finite products                                    of all lengths are 
ergodic matrices, where                                  .

Ergodicity of  Finite product ergodicity

Necessary and sufficient condition for convergence of Necessary and sufficient condition for convergence of 
products  of stochastic matricesproducts  of stochastic matrices

Theorem (Wolfowitz ’63, Daubechies & Lagarias ’92, ’01) 
All infinite products of stochastic matrices chosen from a  finite 
set                               , converge to a rank-one matrix 

for some row vector  , if and only if:

Complexity: decidable but PSPACE-Complete  (Hernek’95).
The necessary and sufficient condition does not provide an effective 
computation scheme. Need to exploit the problem structure.
Products of ergodic matrices is not necessarily ergodic.
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Conditions for reaching consensusConditions for reaching consensus

Theorem (Tsitsiklis’84, Jadbabaie et al. 2003): If  there is a 
sequence of bounded, non-overlapping time intervals Tk, such 
that over any interval of length Tk, the network of agents is 
“jointly connected ”, then all agents will reach consensus on their 
velocity vectors. 

This happens to be   both necessary and sufficient for 
exponential coordination, boundedness of intervals not 
required for asymptotic coordination. (see Moreau ’04)
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Theorem: necessary and sufficient condition for almost 
sure convergence is                          ,i.e., the average 
matrix needs to be ergodic. 

Consensus in random networksConsensus in random networks

Theorem : Assuming graphs are randomly chosen and 
independent, reaching consensus is a trivial event, i.e., 
either it happens almost surely or almost never, i.e., it 
satisfies the Kolmogorov 0-1 law.

is a random switching signal 
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Consensus in Continuous timeConsensus in Continuous time

As before, σ(t) is a piecewise constant switching signal
The model is now a hybrid or switching dynamical system
Need to assume a dwell time on each graph to avoid 
complications
The result is virtually the same, as  exponentials of Laplacians
are stochastic matrices

Later on go from graphs to simplicial complexes and use this to verify coverage
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Flocking, artificial life, and Flocking, artificial life, and 
computer graphicscomputer graphics

Reynolds [Reynolds 87] named the autonomous 
systems that behave like members of animal groups 
boids (bird + oids)
He developed a descriptive model for flocking 
behavior based on the combined action of 
alignment and cohesion-separation forces

alignment: steer towards the average heading of flockmates

separation: steer to avoid crowding flockmates

cohesion: steer towards the average position of flockmates
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Distributed coordination with dynamic Distributed coordination with dynamic 
models:models:

Double integrator model

Neighbors of i distance 
dependent:

Cohesion/Separation

Alignment

For dynamic models, Proximity graph Connectivity implies 
emergence of  Collective motion (Tanner, Jadbabaie, Pappas)
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Synchronization of coupled oscillatorsSynchronization of coupled oscillators

Kuramoto model with long-range interaction

Toy model for pacemaker cells in the heart and nervous 
system,  collective synchronization of pancreatic beta cells,  
synchronously  flashing fire flies, gait generation for bipedal 
robots (Klavins and Koditschek’02).
Benchmark problem in physics
Not very well understood 

over arbitrary networks
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Only neighboring oscillators contribute to the sum

B is the incidence matrix

Theorem: For arbitrary connected networks, connectivity 
implies local stability of the synchronized state. Rate of 
convergence determined by “algebraic connectivity”, the 
first non-zero eigenvalue of the graph Laplacian.

Kuramoto model Kuramoto model 
over arbitrary graphsover arbitrary graphs
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When  ω=0,                     is an asymptotically stable  fixed 
point.

is a Lyapunov function, 
measuring asynchrony.

λ2(L) determines the speed of synchronization

Properties of the modelProperties of the model

r(t) is the order parameter, or measure of synchrony
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A Special CaseA Special Case

Fixed points:

But, this stability result is not global. In the case of 
the ring topology                              is not the only 
equilibrium. This is due to the fact that B and BT 

have the same null space!
is also stable:

Thus

For |θi|<π/2 for a connected graph, all trajectories will converge to S

Therefore, all  velocity vectors will synchronize.
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KuramotoKuramoto model w/ non identical model w/ non identical 
oscillatorsoscillators

When the frequencies are non zero, there is no fixed point 
for small values of coupling.

Theorem: Bounds on the critical value of the coupling can be 
determined by maximum deviation of frequencies from the 
mean, and  algebraic connectivity of the graph.

When ω is random, 
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KuramotoKuramoto model w/ non identical model w/ non identical 
oscillatorsoscillators

When the frequencies are non zero, there is no fixed point 
for small values of coupling.
There is no partial synchronization for fixed values of initial 
frequencies for small K.
Theorem: Bounds on the critical value of the coupling can be 
determined by maximum deviation of frequencies from the 
mean, and  algebraic connectivity of the graph.

When ω is random, 



A. Jadbabaie “Distributed Coordination Protocols: From Flocking and Synchronization to Coverage in Sensor Networks

0 5 10 15 20 25 30 35 40 45 50
0.7

0.75

0.8

0.85

0.9

0.95

1

Average order parameter vs. K for Average order parameter vs. K for 
N= 100,e= 2443 N= 100,e= 2443 

Coupling strength K

O
rd

er
 P

ar
am

et
er

,
av

er
ag

ed
 o

ve
r t

im
ea

nd
ω

Critical 
coupling

Bound on 
critical coupling



A. Jadbabaie “Distributed Coordination Protocols: From Flocking and Synchronization to Coverage in Sensor Networks

Want to globally minimize 1-r2 over the whole network
Let z= sin(BT θ)

Subject to:

Dual decomposition and nonlinear Dual decomposition and nonlinear 
network flownetwork flow

Supply at each node

Sum of pair-wise 
potentials

Kuramoto model is the Subgradient
algorithm for solving the dual

Subgradient algorithm

Lagrangian

Shor 87, Tsitsiklis ’86
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Velocity vector vi of agent i is a unit vector
along the z-axis of the body frame.

Full Kinematics equation:

ωi is the body angular velocity.

The reduced kinematics becomes:  

From synchronization to distributed alignmentFrom synchronization to distributed alignment

x y

Z=vi

ωx ωy

ωz

Xw Yw

Zw

Xi 

Yi

ZiRi

pi
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Theorem: Consider the system of N kinematic agents 

If the proximity graph of the agents is connected over time, and all initial 
velocity vectors are in a hemisphere, applying the control law

will result in asymptotic  velocity alignment

Distributed velocity alignment in 3DDistributed velocity alignment in 3D

Proof:
all trajectories converge to the 
equilibria given by ωi = 0.
A hemisphere is positively invariant
under our control law.
The consensus set is the 
equilibrium set in the hemisphere.
Note that application of LaSalle to 
switched graph case is “tricky”

Riy

Rix

vi

vj

ωi

αij
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Beyond Graphs in Networked SystemsBeyond Graphs in Networked Systems

Spectral graph theory helps us quantify properties of 
networked systems
For certain problems, e.g. coverage, makes sense to go 
beyond graphs and pair-wise interactions
Example: Given a set of sensor nodes in a given domain 
(possibly bounded by a fence), is every point of the domain 
under surveillance by at least one node?
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From Graphs to Simplicial ComplexesFrom Graphs to Simplicial Complexes

Simplicial Complex: A finite 
collection of simplices
Simplex:  Given V, an 
unordered non-repeating 
subset
k-simplex: The number of 
points is k+1
Faces: All (k-1)-simplices in 
the k-simplex
Orientation
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From Graphs to From Graphs to SimplicialSimplicial ComplexesComplexes

Simplicial complex: made up of simplices of several 
dimensions
Properties 

Whenever a simplex lies in the collection then so does each of its 
faces
Whenever two simplices intersect, they do so in a common face. 

Valid Examples
Graphs
Triangulations

Invalid examples
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RipsRips--VietorisVietoris Simplicial ComplexSimplicial Complex

0-simplices : Nodes
1-simplices : Edges
2-simplices:  A triangle in 
the connectivity graph ~  2-
simplex (Fill in with a face)
K-simplices: a complete 
subgraph on k+1 vertices
k-simplex in the Rips 
complex ~ (k+1) points 
within communication range 
of each other
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Boundary MapsBoundary Maps

Let              be the vector space whose basis is the set of oriented k-simplices
of X
The boundary map is the linear transformation

k-cycles:
k-boundaries:
Note: 

Homology groups : Hk(X) =  Zk (X) /  Bk (X)
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Combinatorial Combinatorial kk--LaplaciansLaplacians

Since X is finite we can represent the boundary maps in matrix form

Moreover, we can get the adjoint

[Eckmann 1945] The Combinatorial k-Laplacian is 
given by

Note: 

incidence matrix
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kk--LaplacianLaplacian at the Simplex Levelat the Simplex Level

Adjacency of a simplex to other simplices
Upper adjacency if they share a higher simplex (e.g. 2 
nodes connected by an edge)    
Lower adjacency if they share a common lower simplex 
(e.g. two edges share a node) 

‘Local’ formula with orientations                      
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Homology classes from Homology classes from kk--LaplaciansLaplacians

The harmonic k-cycles are given by (Hodge theorem)

We now have a decomposition into orthogonal subspaces

The Laplacian operator is invariant on each subspace and 
positive definite on   

Unique harmonic cycle for each homology class

Kernel of the Laplacian ~ homology classes 
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LaplacianLaplacian FlowsFlows

Laplacian flows : a semi-stable dynamical system 

(Recall heat equation for k = 0)

[Muhammad-Egerstedt MTNS’06]

System is asymptotically 
stable if and only if 
rank(Hk(X)) = 0.  

A method to detect 
‘no holes’ locally
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LaplacianLaplacian Flows (contd.)Flows (contd.)

System converges to  
the unique harmonic cycle
if rank(Hk(X)) = 1.  

A method to detect 
‘proximity to hole’ locally
when single hole 

When rank(Hk(X)) > 1 :
System converges to the span of harmonic homology cycles
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Work in Progress Work in Progress ……..

Distinguish between multiple homology classes by 
decentralized eigenvector decomposition of k-Laplacian
(Kempe’s algorithm)

Quantify ‘proximity to holes’

Quantify fragilities in network : near-harmonic cycles (Fiedler 
like characterization such as cutpoints for holes?)

Switching k-Laplacians and ‘wandering holes’
A “spectral theory” for simplicial complexes?



A. Jadbabaie “Distributed Coordination Protocols: From Flocking and Synchronization to Coverage in Sensor Networks

Example, eigenvectors of Example, eigenvectors of LL11

Network 1st homology class

2nd homology class ‘Fiedler-like’- eigenvector 
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Ongoing work: detection of wandering Ongoing work: detection of wandering 
holes in coverageholes in coverage

V. De Silva and R Ghrist, “Homological Sensor Networks”

Given a set of sensors with a disk footprint, add:
an edge when 2 sensors overlap. A face when 3 sensors overlap

Construct the 1st Laplacian L1

Rips complex is “jointly connected over time” intersection of kernels 
of Laplacians is zero              no wandering hole in coverage

The dynamical system (which is distributed) converges to zero

Instead of Spectral Graph theory look at spectral theory of simplicial complexes
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Results on Spatially  invariant systems 
and distributed control

Mostly over highly symmetric graphs w/ identical 
dynamics 

Infinite Horizon Quadratic Cost 
No constraints on inputs and states
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Structure of optimal control for spatially 
distributed systems: spatially invariant case

Finite Horizon Quadratic Cost

Does the optimal control policy have the same spatial structure as plant ?
In other words, is it spatially distributed ? 

Model of each subsystem:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +
)t(u
)t(x

DC
BA

)t(y
)1t(x

)1.(Eq
k

k

k

k

Finite Horizon Optimal Control problem:

Gk
Nt0fory)t(yy
Nt0foru)t(uu
Nt0for)1(.Eq.t.s

)),0(x(Jmin

c
k
maxk

k
min

c
k
maxk

k
min

N
N

∈

≤≤≤≤

≤≤≤≤

≤≤

u
u
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Identical dynamics over 
infinite lattices

Fourier Analysis on Lattice:

Signals in the spatial domain:

Fourier transform:

For simplicity, replace 

1D Lattice:
0x 1x1x− 2x2x− L

LL
L

),x,x,x,(x 101 LL −=

LL ++++= −
−

ωi
10

ωi
1 exxexx̂

ωiez =

Fourier transform: ∑
∈

−=
Gk

k
k zxx̂

G : spatial domain
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Translation Invariant Operators

1D Lattice:

agent k is coupled to its neighbors through cost function J

)xQ(x,
xQ xxQ xxQ xJ 1k1

*
kk0

*
k1k1-

*
k

T=

++++= +− LL

kx 1kx +1kx − 2kx +2kx − L
LL

L

1-1 TTT 101- QQQ)Q( ++=in which 

Global cost function

TT QQ =

),x,x|,(),x,x|,( 2k1k1kk LLLL +++ =T
Definition:.

Translation Operator:

Q  is translation invariant operator if

Example:
Consider translation invariant operators of this form 

∑
∈

=
Gk

k
kQ)Q(  TT
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Decay Property of Translation Invariant Operators

)z(N
)z(d

1zQ(z)Q̂
G  k

k
k == ∑

∈

1S

)zRe(

)zIm(

)zRe(

)zIm(

1S

No pole on 1S No pole in an annulus
around    1S

k

2kQ

0 11

Coefficients decay 
in spatial domain    

−

Fact 1: Analytic continuity implies decay in spatial domain.

Fact 2: The decay rate depends on the distance of the   
closest pole to the unit circle; the further, 
the faster.

∑
∈

=
Gk

k
kQ)Q( TT

Analytic continuity
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Back to our problem

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +
)t(u
)t(x

DC
BA

)t(y
)1t(x

)1.(Eq
k

k

k

k

k 1k +1k − 2k +2k −

),)t(x,)t(x,()t(x 1kk LL +=

),)t(u,)t(u,()t(u 1kk LL +=

Notation: 

Model of each subsystem:

),,,(N LL N
1k

N
k += uuu

*
kkk ))1N(u,),1(u,)0(u( −= LN

ku
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∑
−

=

++=
1N

0t

N )u(t)R(u(t),)x(t)Q(x(t),)x(N)P(x(N),)),0(x(J TTTu

Finite Horizon Quadratic Cost:

can be obtained from a parameterized family of DAREs:)P(T

0)z(Q̂A)z(P̂B)B)z(P̂B)z(R̂(B)z(P̂A)z(P̂A)z(P̂A *1*** =++−− −

for all           . 1Sz∈

is spatially decaying:)P(T

k

Gk
kP)P( TT ∑

∈

= 0β,csomeforecP |k|β
k >≤ −

Spatial Locality of   Centralized RHC
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Spatial Locality of the Optimal Solution

Theorem: Given the initial condition x(0), the optimal solutions are :

∑
∈

+=
Gj

ijij
N
i cxKu )0((1) Affine maps of x(0), i.e.,

(2) Spatially distributed, i.e., |ji|β
2ij eαK −−≤

.0β,αsomefor >
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Generalization to Arbitrary Graphs

Analytic continuity Exponential decay in spatial domain  

iandkagentbetweencoupling:Q ki

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

O

O

kiQQ

)i,k(dis
kiki ζQQ~ =

.decaying
spatiallyonentiallyexpis
Qthatsaywethen
,boundedisQ~  If 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

O

O

kiQ~Q~

kiQ
bζ1where
ζbyMultiply

<≤

bounded. is
 Q that Suppose

Note: SD stands for Spatially Decaying
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Re

Im

1S

Re

1S
1|z|

ez ωi

=

= − r1|z~|r1
eζz~ ωi

+≤≤−

= −

r1ζr1where
ζbyMultiply

+≤≤−Im

No pole on No pole in an annulus  
Analytic continuity

1S

.decayingspatiallyisQ

∞<∑
∈G  k

|k|
2 k ζ|Q|If

.annulustheon

boundedisz~Q)z~(Q̂
G  k

k
k∑

∈

=

Extending analytic continuity
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Three important class of problems with spatially-varying couplings:

(1) Systems with nearest
neighbor coupling:

0dwith
d|s|if0
d|s|if1

ψ

>
>
≤

⎩
⎨
⎧

=(s)

(2) Systems with 
exponentially 

decaying couplings:

1ζwith
ζψ |s|

>
=(s)

(3) Systems with 
algebraically 
decaying coupling:

0β,αwith
)|s|α1(ψ β

>
+=(s)

Systems with Arbitrary Couplings 
over Arbitrary Graphs

-1(s)ψ

s

-1(s)ψ

s

(s)ψ

s

))i,k(dis(ψQQ~ kiki =
))i,k(dis(ψbyMultiply

kiQ



A. Jadbabaie “Distributed Coordination Protocols: From Flocking and Synchronization to Coverage in Sensor Networks

Properties of SD operators

Definition:

.SDisQthatsaywe
then,boundedisQ~  If.givenis),1[R:ψfunction

sticcharactericouplingtheandboundedisQSuppose

∞→

−
+

Theorem: sums, products and inverses of SD operators are SD.

(1) Solution P of the Lyapunov Equation is SD:

(2) Solution of the Algebraic Riccati Equation is SD:
0QAPPA,0QPAPA ** =++=+−

)CARE(0QPBRBPAPPA
)DARE(0QAPB)PBBR(BPAPAPA

*1*

*1***

=+−+

=++−−
−

−

(3) Solutions to finite horizon constrained quadratic
optimization problems   are SD.

Therefore, if A and B, Q , and R are SD



A. Jadbabaie “Distributed Coordination Protocols: From Flocking and Synchronization to Coverage in Sensor Networks

Summary

Centralized solutions to finite and infinite 
horizon optimal control problems for spatially 
distributed  systems has an  inherent spatial 

locality.
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