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PropositionalLogic

Boolean connectives: ∧ (AND); ∨ (OR); ¬ (NOT); etc.

Boolean variables: p, q, r, . . . , x, y, z, . . . , range over {T, F}.

A tautology is a valid (=always true) formula.

A formula is satisfiable iff exists an assignmentmaking it true.

Formula φ is a tautology iff ¬φ is not satisfiable.

Algorithmic goals: Given formula φ:

- Determine if φ is a satisfiable. If so, find a satisfying assignment.

- Determine if φ is a tautology. If so, find a formal proof.

NP-hard!
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Combinatorial principles as tautologies.

Example1: Thepigeonholeprinciple. Forn ≥ 1, 0 ≤ i ≤ n and 0 ≤ j < n,

¬
[ ∧

i

∨
j

pi,j ∧
∧
i<i′

∧
j

¬(pi,j ∧ pi′,j)

]
.

Example 2: Counting principles. Fix k > 1. For n �≡ 0 (mod k),
“n cannot be partitioned into sets of size k”

¬
[ ∧

i

∨
i∈A

pA ∧
∧

A �=B
A∩B �=∅

¬(pA ∧ pB)

]
.

whereA,B ∈ [n]k .
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Example 3: Primality tautologies. Fix a > 1 a prime number. Let a have n
bits in its binary representation. a = (an−1, . . . , a0)2.
Let p = (pn−1, . . . , p0)2 and q = (qn−1, . . . , q0)2 be unspecified integers.

¬
[
Product(�p, �q,�a) ∧ (

∨
i>1

pi) ∧ (
∨
i>1

qi)

]
.

The variables are �p, �q . The bits�a are constants.
Here “Product” expresses base-2multiplication.

Taking a a composite, say product of two n/2 bit integers, then the negation
of the formula is satisfiable. This allows us to generate formulas that are easy
to recognize as satisfiable, but are conjectured to be hard to find satisfying
assignments for.
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P andNP
Def’n: P is the class of predicates (decision problems) that are decidable in
polynomial time in the length n of the input.

NP is theclassofpredicates forwhich“Yes”answersareverifiable inpolynomial
time.

Examples in P . Given integer x, is x perfect square? Given integers x and y ,
is themiddle bit of the product x · y a ‘1’?

Examples in NP: Is x a composite?

Much less obviously, is x a prime? [Pratt, 1975].
Verymuch less obviously, the set of primes is in P . [Agarwal et al., 2002].

OpenConjecture: Integer Factorization is not in P .
This conjecture and related ones are the basis of the theory of public key
cryptography.
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ExamplesofNP problems

SAT (Satisfiability): Given a propositional formula, over connectives AND
(∧), OR (∨), NOT (¬), and with variables p, q, r, . . ., does it have a satisfying
assignment? That is, can the variables be set so as tomake the formula true?

Hamiltonian cycle. Given graphG, does it have aHamiltonian cycle?

k-Provability. Givenaformula(atheorem),does ithaveaproofof≤ k symbols
in some given formal proof system? [Alekhnovich-Buss-Pitassi-Moran]

All three of these are NP-complete (the third at least for certain proof systems).
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Def’n A problem is co-NP if its complement is NP. I.e., its “No” answers are
verifiable in polynomial time.

Example 1: The set of primes is obviously in co-NP.

Example 2: The set of tautologies is co-NP-complete.

Note that ϕ is a tautology iff ¬ϕ ∈ SAT.

Methods for proving tautologies: (a)Method of truth tables, (b) decision trees,
(c) Give a proof in a formal system (e.g., a Frege system). (d) Etc.

(a),(b) require exponential size proofs. For (c), it open, firstly, whether
polynomial size proofs exist and, secondly, whether proofs can be found
efficiently.
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Cook’sProgramfor theP -NP problem

Def’n. A Frege proof system, F , is a proof system for propositional logic, say
over∧,∨,¬,→, basedonafinite setof axiomschemes suchasA→ (B → A),
and based on a finite set of inference rules, such asmodus ponens:

A A→ B

B

AFrege system is sound and complete (implicationally).

These are the usual “textbook” proof systems.

Open: Find good upper bounds on the lengths of tautologies. I.e., find slow-
growing function f such that every tautology of length n, has an F -proof of
≤ f(n) symbols.

f(n) = 2O(n) suffices. Can f(n) be polynomial, nO(1)?
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Thm: [Cook’75]. If Frege proof lengths can be polynomially bounded, then
NP = co-NP

Pf. The tautologies are co-NP-complete. If they have polynomial size F -
proofs, they would be in NP (by simply guessing the proof). From this
NP = co-NP would follow. q.e.d.

Cook’s program Starting with weak proof systems for propositional logic,
prove superpolynomial lower bounds on the size of proofs. Work up to
superpolynomial lower bounds on stronger systems such as Frege systems,
eventuallytoallproofsystems. ThiswouldproveNP �= co-NP,henceP �= NP.

This has been carried out only for restricted proof systems.

Cook’s definition of a proof system:
Any polynomial time functionwith range equal to the set of tautologies.
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SomeCompleteProofSystems

Truth tables
Resolution

Cutting planes
Nullstellensatz

Gröbner basis / Polynomial calculus
Constant-depth (cd) Frege

cd-Fregewith counting axioms
..............................................
cd-Fregewith counting gates

Frege systems
Extended Frege systems
Quantified Frege systems

Set theory

–
Clauses

Linear integer inequalities
Single polynomial identity

Field polynomial
cd poly size formulas
cd poly size formulas

..............................................
Poly size fmlaswithmod gates

Poly size formulas
Poly size circuits

Polynomial space predicates
–

Superpolynomial lower bounds are known for systems above the dotted line.
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ExtendedFregesystems

[Tseitin]AnextendedFrege system isaFrege systemaugmentedwith theability
to introduce abbreviations on the flywith the extension rule:

q ↔ A

where A is any formula, and q must be a “new” variable that does appear yet
in the proof, in A, or in the formula to be proved. This introduces q as an
abbreviation forA.

Introducing abbreviations allows proof length to be shorter (well, this is open),
since long formulas can be replaced by abbreviations.

Equivalently: extended Frege systems are Frege systems that use Boolean
circuits instead of formulas.
Also equivalent: Extended Frege systems are Frege systems with proof length
measured in terms of the number of inferences in the proof. [Statman]
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Thepigeonholeprinciple (PHP)asatautology

Let [n] = {0, . . . , n}.

The PHP states there is no 1-1 function f : [n] → [n − 1]. To encode this as a
tautology, use propositional variables pi,j which express the truth of f(i) = j .

The PHPn+1
n tautology is:

¬
[ ∧

i

∨
j

pi,j ∧
∧
i �=i′

∧
j

¬(pi,j ∧ pi′,j)

]
.

Let’s give a proof of this by contradiction ....
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Phase 1: Define variables qk
i,j that

define a violation of PHP k+1
k . For

this, let qn
i,j = pi,j and define

qk
i,j ↔ qk+1

i,j ∨ (qk+1
i,k−1 ∧ qk+1

k,j ).

Phase 2: Prove that if qk+1’s violate
thePHP, then so do the qk ’s.

Phase 3: Proof is done, the PHPn+1
n

implies PHP 2
1 , which is impossible.

QED

... ...

... ...

...

...
...

...

0

1

i

k-1

k

0

1

j

k-1

qk
i,j

qk+1
i,k−1

qk+1
k,j

This gives poly size extended Frege proof, but not poly size Frege proof.
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Thm. [Buss] The PHPn+1
n tautologies have polynomial size Frege proofs.

Thm. [Haken] The PHPn+1
n tautologies require exponential size resolution

proofs. (Actually, refutations.)

Thm. [Chvátal-Szemerédi] Suitably chosen random set of clauses require
exponential size resolution refutations.

Def’nThedepth of a propositional formula is the number of alternations of∧’s
and ∨’s. For this count, implications are replaced and negations are pushed to
the variables.

A constant depth Frege proof is a (family) of proofs in which the depth of
formulas are bounded by a constant.

Thm. [Pitassi-Beame-Impagliazzo, Kraj́ıček-Pudlák-Woods] The PHPn+1
n

tautologies require exponential size constant-depth Frege proofs.

Proof used an extension of theHastad switching lemma.
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AlgebraicProofSystems-General formulation

Fix a ringR—usuallyR is Z or a field F .

Define a translation (*) from propositional logic to (in)equalities over R.
Usually the translation is linear ormultilinear.

The elements 1 and 0 correspond toTrue andFalse.

(True)∗ = 1 and (False)∗ = 0
(¬φ)∗ = 1 − φ∗.
(φ ∧ ψ)∗ = (φ∗)(ψ∗) (over fields).

Etc.

Details vary based on the proof system....
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CuttingPlanesSystems-Linear Inequalitiesover Z

[Gromov, Chvátal, ...] Reasonwith inequalities of the form

a1x1 + a2x2 + · · · + anxn ≥ b,

for a1, . . . , an, b ∈ Z. IdentifyTruewith 1 and 0withFalse.

Example: the clause p ∨ ¬q ∨ r ∨ ¬s is translated to

p+ (1 − q) + r + (1 − s) ≥ 1.

i.e., to 1 · p+ (−1) · q + 1 · r + (−1) · s ≥ −1.

Also add, for all variables, the inequalities

xi ≥ 0 and (−1)xi ≥ −1.
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CuttingPlanes -cont’d

Rules of inference are:

a. Addition rule, and

b. Division rule. If a1, . . . , an aremultiples of d > 0,

∑
i aixi ≥ b∑

i(ai/d)xi ≥ 
b/d�

Justification: xi’s are integer valued (0,1 valued).

A cutting planes proof consists of a derivation of 0 ≥ 1 from a initial set of
clauses. Thus it is a refutation system(like resolution) in that it proves the initial
set of clauses is unsatisfiable.

Cutting planes is sound and complete.
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PolynomialCalculus&Nullstellensatz systems

[Pudlák, Clegg-Edmonds-Impagliazzo]

Work in a field F , usually F = R or a finite field, e.g., Z
∗
p.

Let f1(�x), . . . , fk(�x) be polynomials.
The goal is to show that there is no solution �x s.t. fi(�x) = 0, ∀i.
Auxiliary polynomials: fk+i(�x) := x2

i − xi.

Nullstellensatz and the polynomial calculus are refutation systems. They try to
prove that 1 = 0 follows from the equations fi(�x) = 0.

Defn: ANullstellsatz refutation consists of g1(�x), . . . gk+n(�x) such that

g1(�x)f1(�x) + · · · + gk+n(�x)fk+n(�x) = 1. (1)
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Defn: A polynomial calculus refutation is a sequence of lines of the form
h(�x) = 0 where h is a polynomial (essentially allmultilinear),where the rules of
inference are:

Axioms: fi(�x) = 0

Rule of inference:
h1 = 0 h2 = 0
k1h1 + k2h2 = 0

where k1, k2 are polynomials,

The last line of the refutationmust be 1 = 0.

Thm The Nullstellensatz system and the polynomial calculus are sound and
complete.

Defn: The size of a refutation is the number of bits needed to write out its
description. Sometimes the number of lines or the number of occurrences of
monomials is used instead.
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More commonly, the degree of the polynomials is used instead. In many cases,
lower bounds on the degree of refutations translates into lower bounds on the
size of refutations.

E.g., Constant degree corresponds to polynomial size proof. And linear lower
bounds (εn), or even

√
n lower bounds on degree often give exponential lower

bounds on the size of the proofs.

LowerBounds

• Polynomial calculus refutations of the pigeonhole principle require degree√
n. [Razborov]

• PolynomialcalculusrefutationsofthecountingprinciplesrequiredegreeΩ(n).
[Buss-Grigoriev-Impagliazzo-Pitassi, ...]

• The housesitting principles have degree 3 polynomial calculus proofs, but
require degree nNullstellensatz refutations. [CEI]
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Positivstellensatz

[Grigoriez-Vorobjov]Workingoveranorderedfield, startwithsamepolynomials
as the polynomial calculus. A Positivstellensatz refutation consists of showing
that ∑

i

gifi = 1 +
∑

j

h2
j .

in a the static situation (analogous to theNullstellensatz system).

Or, in the inference based version using the inference rules of the polynomial
calculus, a Positivstellsatz refutationmust derive

1 +
∑

j

h2
j = 0.
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AutomatizabilityandProofSearch

Cook’s program concerned only the existence of proofs. For practical
application, proof search is at least as important.

Def’n A proof system T is automatizable provided there is an algorithm f(x)
and a constant c > 0 such that, whenever T � ϕ with a proof of k symbols,
then f(ϕ) runs for less than kc steps and outputs a T -proof of ϕ.

Automatizabilitymeans there is a polynomial time algorithm for proof search.
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Somepositiveautomatizability results
Thm [Clegg-Edmonds-Impagliazzo; Beame-Pitassi]
Tree-like resolution is quasiautomatizable.
I.e., If there isatree-likeresolutionrefutationofsizeS , thenatree-likeresolution
refutation can be found in time nO(log S).
(n is the number of variables.)

Thm [CEI; BP]
Resolution is quasiautomatizablew.r.t. large proofs.
I.e., if there is a resolution refutation of size S , then a resolution refutation can
be found in time nO(

√
n log S).

Proof idea: Bottom-up search for tree-like proofs.

Thm [CEI] Fix d to be constant. The degree d Nullstellensatz and the degree d
polynomial calculus are automatizable.

Proof idea: only nd monomials.
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Somenegativeautomatizability results

Def’nAproduct of two primes congruent to 3mod 4 is called aBlum integer.

Thm [Bonet-Pitassi-Raz] Frege proof systems are not automatizable, unless
there is a probabilistic polynomial algorithm for factoringBlum integers.

Similar results hold for cd-Frege and almost any stronger proof system.

(Proof idea: Reduction via Craig interpolation.)

Thm [Alekhnovich-Razborov] Resolution is not automatizable unless the
parameterizedpolynomial timehierarchycollapses and theweakparameterized
classW [P ] is in randomized fixed-parameter polynomial time (FPT).

(Proof idea: reduction tominimumweightmonotone circuit satisfiability.)
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Adiscouraging remarkandanencouraging remark.

1. High proof complexity does not always imply fragility. E.g., resolution
requires exponential sizeproofsof the 2n→ n pigeonholeprinciple. [Haken,
Buss-Turan]. Or the 2n �→ n pigeonhole principle. [Raz, Razborov].

2. In many cases, it is possible to identify classes of tautologies that have easy
decision procedures. E.g., propositional formulas drawn from a random
distribution can often be easy to test for satisfiability — unless the random
distribution has been deliberately chosen to make it difficult to decide
satisfiability.

3. There is still much to discover!
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