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Propositional Logic

Boolean connectives: A (AND); V (OR); = (NOT); etc.
Booleanvariables: p,q,7,...,x,y,%,...,rangeover {T, F'}.

A tautologyis a valid (=always true) formula.
A formula is satisfiableiff exists an assignment making it true.

Formula ¢ is a tautology iff ¢ is not satisfiable.

Algorithmic goals: Given formula ¢:
- Determine if ¢ is a satisfiable. If so, find a satisfying assignment.

- Determine if ¢ is a tautology. If so, find a formal proof.

NP-hard!



Combinatorial principles as tautologies.

Examplel: Thepigeonholeprinciple. Forn > 1,0 <: <nand0 <j <n,
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Example 2: Counting principles. Fixk > 1. Forn 20 (mod k),
“n cannot be partitioned into sets of size k"
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where A, B € [n]".



Example 3: Primality tautologies. Fix a > 1 a prime number. Let a haven
bitsin its binary representation. a = (an_1,...,0a0)2.
Letp = (pn_1,..-,p0)2and ¢ = (¢n_1, - - -,qo)2 be unspecified integers.

— | Product(p, q,a) N (\/ pi) A (\/ q;)

1>1 1>1

Thevariablesare p, ¢. The bits @ are constants.
Here “Product” expresses base-2 multiplication.

Taking a a composite, say product of two n/2 bit integers, then the negation
of the formula is satisfiable. This allows us to generate formulas that are easy
to recognize as satisfiable, but are conjectured to be hard to find satisfying
assignments for.



Pand NP

Def’n: P is the class of predicates (decision problems) that are decidable in
polynomial timein the length n of the input.

NPistheclassof predicates forwhich “Yes” answers are verifiable in polynomial
time.

Examplesin P. Given integer x, is x perfect square? Given integers x and y,
Is the middle bit of the product x - ya‘1'?

Examplesin NP: |s x a composite?

Much less obviously, is x a prime? [Pratt, 1975].
Very much less obviously, the set of primesisin P. [Agarwal et al., 2002].

Open Conjecture: Integer Factorizationisnotin P.
This conjecture and related ones are the basis of the theory of public key

cryptography.



Examples of NP problems

SAT (Satisfiability): Given a propositional formula, over connectives AND
(A),OR(V), NOT (—), and with variables p, ¢, r, . . ., does it have a satisfying
assignment? Thatis, canthevariables be set so asto make the formula true?

Hamiltonian cycle. Given graph GG, does it have a Hamiltonian cycle?

k-Provability. Givenaformula(atheorem), doesithavea proofof < k symbols
in some given formal proof system? [Alekhnovich-Buss-Pitassi-Moran]

All three of these are NP-complete (the third at least for certain proof systems).
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Def’n A problem is co-NP if its complement is NP. l.e., its “No" answers are
verifiable in polynomial time.

Example 1: Theset of primesis obviously in co-NP.
Example 2: Theset of tautologies is co-NP-complete.
Note that ¢ is a tautology iff —p € SAT.

Methods for provingtautologies: (a) Method of truth tables, (b) decision trees,
(c) Give a proof in a formal system (e.g., a Frege system). (d) Etc.

(a),(b) require exponential size proofs. For (c), it open, firstly, whether
polynomial size proofs exist and, secondly, whether proofs can be found
efficiently.



Cook’s Program for the P- NP problem

Def’'n. A Frege proofsystem, F, is a proof system for propositional logic, say
over A, V, =, —, based on afinite set of axiom schemessuchas A — (B — A),
and based on a finite set of inference rules, such as modus ponens:

A A— B
B

A Frege system issound and complete (implicationally).
These are the usual “textbook” proof systems.

Open: Find good upper bounds on the lengths of tautologies. l.e., find slow-

growing function f such that every tautology of length n, has an F-proof of
< f(n) symbols.

f(n) = 290" suffices. Can f(n) be polynomial, n®1)?



Thm: [Cook'75]. If Frege proof lengths can be polynomially bounded, then
NP = co-NP

Pf. The tautologies are co-NP-complete. If they have polynomial size F-
proofs, they would be in NP (by simply guessing the proof). From this
NP = co-NP would follow. g.e.d.

Cook’s program Starting with weak proof systems for propositional logic,
prove superpolynomial lower bounds on the size of proofs. Work up to
superpolynomial lower bounds on stronger systems such as Frege systems,
eventuallytoall proofsystems. Thiswould prove NP # co-INP, hence P # NP.

This has been carried out only for restricted proof systems.

Cook’s definition of a proof system:
Any polynomial time function with range equal to the set of tautologies.



Some Complete Proof Systems

Truth tables —

Resolution Clauses
Cutting planes Linear integer inequalities
Nullstellensatz Single polynomial identity
Grobner basis / Polynomial calculus Field polynomial
Constant-depth (cd) Frege cd poly size formulas
cd-Frege with counting axioms cd poly size formulas
cd-Frege with counting gates Poly size fmlas with mod gates
Frege systems Poly size formulas
Extended Frege systems Poly size circuits
Quantified Frege systems Polynomial space predicates
Set theory -

Superpolynomial lower bounds are known for systems above the dotted line.



Extended Frege systems

[Tseitin] An extended Frege system isa Frege system augmented with the ability
to introduce abbreviations on the fly with the extension rule:

qg— A

where A is any formula, and ¢ must be a “new” variable that does appear yet
in the proof, in A, or in the formula to be proved. This introduces ¢ as an
abbreviation for A.

Introducing abbreviations allows proof length to be shorter (well, this is open),
since long formulas can be replaced by abbreviations.

Equivalently: extended Frege systems are Frege systems that use Boolean
circuits instead of formulas.

Also equivalent: Extended Frege systems are Frege systems with proof length
measured in terms of the number of inferences in the proof. [Statman]
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The pigeonhole principle (PHP) as a tautology

Let [n] = {0,...,n}.

The PHP states thereis no 1-1 function f : [n] — [n — 1]. Toencodethisasa
tautology, use propositional variables p; ; which express the truth of f(i) = j.

The PH P! tautology is:

-IAVpris A N N\-ijApij)|.
j

i i j

Let's give a proof of this by contradiction ....
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Phase 1: Define variables qu that
’ k-1 k-1

define a violation of PHPIZ?H. For
this, let ¢;'; = p; ; and define

: k+1
bt 1 .5,
k kE+1 k+1 k+1 o1 -
Qz,j NS qz7] \/ (ql,k—l /\ qk’,j ). qz’:k 1 .j
k
I* i,

Phase 2: Prove that if ¢**1's violate
the PHP, thensodo the ¢*'s.

Phase 3: Proofis done, the PH P "1

implies PH P, which isimpossible. 1'><°1
Qe 0

QED

This gives poly size extended Frege proof, but not poly size Frege proof.
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Thm. [Buss] The PH P! tautologies have polynomial size Frege proofs.

Thm. [Haken] The PHP"*! tautologies require exponential size resolution
proofs. (Actually, refutations.)

Thm. [Chvétal-Szemerédi| Suitably chosen random set of clauses require
exponential size resolution refutations.

Def’'n The depth of a propositional formulais the number of alternationsof A's
and V's. For this count, implications are replaced and negations are pushed to
the variables.

A constant depth Frege proof is a (family) of proofs in which the depth of
formulas are bounded by a constant.

Thm. [Pitassi-Beame-Impagliazzo, Kraji¢ek-Pudldk-Woods| The PH P *1
tautologies require exponential size constant-depth Frege proofs.

Proof used an extension of the Hastad switching lemma.
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Algebraic Proof Systems - General formulation

Fixaring R—usually Ris Z orafield F'.

Define a translation (*) from propositional logic to (in)equalities over R.
Usually the translation is linear or multilinear.

Theelements 1 and 0 correspondto Trueand False.
(True)* = 1 and (False)* =0

(m¢)" = 1—0".
(pAV) = (6)(4")  (overfields).
Etc.

Details vary based on the proof system....
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Cutting Planes Systems - Linear Inequalities over Z

[Gromov, Chvatal, ...] Reason with inequalities of the form

ai1xr1 + agxa + - - - + apxy > b,

foraq,...,a,,b € Z. ldentify Truewith 1 and O with False.

Example: theclause p V —q V r V —sistranslated to

p+(1—q)+r+(1—s)>1.
i.e., to l-p+(=1)-¢q+1-r+(=1)-s>—1.
Also add, for all variables, the inequalities

Ty > 0 and (—].)LUZ > —1.
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Cutting Planes-cont’d

Rules of inference are:
a. Addition rule, and

b. Divisionrule. If aq, ..., a, are multiplesof d > 0,

2 ilai/d)zi > [b/d]

Justification: x;'s are integer valued (0,1 valued).

A cutting planes proof consists of a derivation of 0 > 1 from a initial set of
clauses. Thusitisa refutation system (like resolution) inthat it provestheinitial
set of clauses is unsatisfiable.

Cutting planesis sound and complete.
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Polynomial Calculus & Nullstellensatz systems

[Pudlak, Clegg-Edmonds-Impagliazzo]
Workinatield F', usually F' = R orafinitefield, e.g., Z;.

Let f1(Z), ..., fr(Z) be polynomials.
The goal isto show that thereis nosolution Z's.t. f;(Z) = 0, Vi.

Auxiliary polynomials: f1(%) := 2% — x;.

Nullstellensatz and the polynomial calculus are refutation systems. They try to
prove that 1 = 0 follows from the equations f;(Z) = 0.

Defn: A Nullstellsatz refutation consists of g1 (%), . . . gk () such that

91(Z) [1(Z) + -+ - + Grgn (L) frgn(T) = 1. (1)
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Defn: A polynomial calculus refutation is a sequence of lines of the form
h(Z) = 0 where hisa polynomial (essentially all multilinear), where the rules of
inference are:

Axioms: f;(Z) =0
hi=0 hy=0
kih1 + koho = 0
Thelast line of the refutation mustbe 1 = 0.

Rule of inference: where k1, k9 are polynomials,

Thm The Nullstellensatz system and the polynomial calculus are sound and
complete.

Defn: The size of a refutation is the number of bits needed to write out its
description. Sometimes the number of lines or the number of occurrences of
monomialsis used instead.
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More commonly, the degree of the polynomials is used instead. In many cases,
lower bounds on the degree of refutations translates into lower bounds on the
size of refutations.

E.g., Constant degree corresponds to polynomial size proof. And linear lower
bounds (en), or even 1/n lower bounds on degree often give exponential lower
bounds on the size of the proofs.

Lower Bounds
e Polynomial calculus refutations of the pigeonhole principle require degree

v/n. [Razborov]

e Polynomial calculusrefutationsofthecountingprinciplesrequiredegree (2(n).
[Buss-Grigoriev-Impagliazzo-Pitassi, ...

e The housesitting principles have degree 3 polynomial calculus proofs, but
require degree n Nullstellensatz refutations. [CEl]
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Positivstellensatz

[Grigoriez-Vorobjov] Working over an ordered field, start with same polynomials
as the polynomial calculus. A Positivstellensatz refutation consists of showing

that
D gifi=1+) B3
{ J

in a the static situation (analogous to the Nullstellensatz system).

Or, in the inference based version using the inference rules of the polynomial
calculus, a Positivstellsatz refutation must derive

1+ h?=0.
j
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Automatizability and Proof Search

Cook's program concerned only the existence of proofs. For practical
application, proof searchis at least as important.

Def’n A proof system T is automatizable provided there is an algorithm f(x)
and a constant ¢ > 0 such that, whenever T' - ¢ with a proof of k£ symbols,
then f () runsforlessthan k€ steps and outputsa T-proof of .

Automatizability meansthere is a polynomial time algorithm for proof search.
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Some positive automatizability results
Thm [Clegg-Edmonds-Impagliazzo; Beame-Pitassi]
Tree-like resolution is quasiautomatizable.
|.e. Ifthereisatree-likeresolutionrefutationofsize .S, then atree-likeresolution
refutation can be found in time n©og5)
(n isthe number of variables. )

Thm [CEI; BP]
Resolution is quasiautomatizable w.r.t. large proofs.

|.e., if thereis a resolution refutation of size .S, then a resolution refutation can
be found in time nC(vVnlogs)

Proof idea: Bottom-up search for tree-like proofs.

Thm [CEI] Fix d to be constant. The degree d Nullstellensatz and the degree d
polynomial calculus are automatizable.

Proofidea: only n¢ monomials.
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Some negative automatizability results

Def’'n A product of two primes congruent to 3 mod 4 is called a Blum integer.

Thm [Bonet-Pitassi-Raz| Frege proof systems are not automatizable, unless
there is a probabilistic polynomial algorithm for factoring Blum integers.

Similar results hold for cd-Frege and almost any stronger proof system.

(Proof idea: Reduction via Craig interpolation.)

Thm [Alekhnovich-Razborov] Resolution is not automatizable unless the
parameterized polynomial time hierarchy collapses and the weak parameterized
class W[ P] isin randomized fixed-parameter polynomial time (FPT).

(Proofidea: reduction to minimum weight monotone circuit satisfiability.)
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A discouraging remark and an encouraging remark.

1. High proof complexity does not always imply fragility. E.g., resolution
requires exponential size proofs of the 2n. — n pigeonhole principle. [Haken,
Buss-Turan]. Orthe 2™ +— n pigeonhole principle. [Raz, Razborov].

2. In many cases, it is possible to identify classes of tautologies that have easy
decision procedures. E.g., propositional formulas drawn from a random
distribution can often be easy to test for satisfiability — unless the random
distribution has been deliberately chosen to make it difficult to decide
satisfiability.

3. Thereisstill much to discover!
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