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Problem 1 (MTA 5.1-1)

For g ∈ GL(n, R) and ξ, η ∈ L(Rn, Rn), by definition of the adjoint operator,

Adgξ = gξg−1

and hence that

Adg[ξ, η] = g[ξ, η]g−1 = g(ξη − ηξ)g−1

= gξg−1gηg−1 − gηg−1gξg−1

= [gξg−1, gηg−1]

= [Adgξ, Adgη].

Problem 2 (MTA 5.1-2)

It is clear that TG is a manifold. Hence, we only need to show that TG is a
group and that the group multiplication is smooth. Assume that (g, g̃) ∈ TG
and (h, h̃) ∈ TG. The group multiplication is defined as Tµ : TG×TG → TG,

Tµ : ((g, g̃), (h, h̃)) 7→ (gh, ThLgh̃ + TgRhg̃).

TG is a group, because the group multiplication as defined above satisfies:

• (Closure) Since ThLgh̃+TgRhg̃ is in TghG, we see that (g, g̃)·(h, h̃) ∈ TG.

• (Associativity)

((g, g̃) · (h, h̃)) · (f, f̃) = (gh, ThLgh̃ + TgRhg̃) · (f, f̃)

= (ghf, TfLghf̃ + TghRf (ThLgh̃ + TgRhg̃))

= (ghf, TfLghf̃ + Th(Rf ◦ Lg)h̃ + Tg(Rf ◦Rh)g̃)

= (ghf, Tf (Lg ◦ Lh)f̃ + Th(Lg ◦Rf )h̃ + TgRhf g̃)

= (ghf, ThfLg(TfLhf̃ + ThRf h̃) + TgRhf g̃)

= (g, g̃) · (hf, TfLhf̃ + ThRf h̃)

= (g, g̃) · ((h, h̃) · (f, f̃))

• (Identity) The identity element is (e, 0).

(g, g̃) · (e, 0) = (g, TeLg(0) + TgReg̃) = (g, g̃)

(e, 0) · (g, g̃) = (g, TgLeg̃ + TeRg(0)) = (g, g̃)
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• (Inverse) The inverse is TI : (g, g̃) 7→ (g−1,−(TeRg−1 ◦ TgLg−1)(g̃)) (use
Eq. (9.1.3) in the book).

(g, g̃) · (g, g̃)−1 = (g, g̃) · (g−1,−(TeRg−1 ◦ TgLg−1)(g̃))

= (e, Tg−1Lg(−(TeRg−1 ◦ TgLg−1)(g̃)) + TgRg−1 g̃)

= (e,−Tg(Lg ◦Rg−1 ◦ Lg−1)g̃ + TgRg−1 g̃)

= (e, 0)

(g, g̃)−1 · (g, g̃) = (g−1,−(TeRg−1 ◦ TgLg−1)(g̃)) · (g, g̃)

= (e, TgLg−1 g̃ + Tg−1Rg(−(TeRg−1 ◦ TgLg−1)(g̃)))

= (e, TgLg−1 g̃ − Tg(Rg ◦Rg−1 ◦ Lg−1)g̃)

= (e, 0).

Moreover the group operation is smooth since the group operation µ is smooth.

Problem 3

(a) (Nawaf Bou-Rabee) Let XR(G) denote the set of right invariant vector
fields on G. We will show that the map TeG → XR(G) given by:

TeRg · ξ = Yξ(g)

is right-invariant, smooth, and an isomorphism.

To show it is right-invariant consider:

TgRh · Yξ(g) = TgRh · TeRg · ξ = Te(Rg ◦Rh)ξ = TeRhg · ξ = Yξ(hg)

Thus, Yξ ∈ XR(G).

Moreover, XR(G) is closed under the Lie bracket, i.e., for X, Y ∈ XR(G)
then [X, Y ] ∈ XR(G) since

(Rg)∗[X, Y ] = [(Rg)∗X, (Rg)∗Y ] = [X, Y ]

which follows from the definition of right invariance ((Rg)∗X = X and
(Rg)∗Y = Y ) and smoothness of Rg. Thus, XR(G) forms a Lie algebra.

To show it is isomorphic to TeG consider the map ζ1 : XR(G) → TeG
given by

Yξ 7→ Yξ(e) = ξ ∈ TeG

and the map ζ2 : TeG → XR(G)

ξ 7→ TeRg · ξ ∈ XR(G)

Since ζ1 ◦ ζ2 = idTeG and ζ2 ◦ ζ1 = idXR(G), the two spaces are bijec-
tive. Moreover these maps preserve linearity, hence the two spaces are
isomorphic.
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(b) (Nok Wingpiromsarn 2007) Since φ is the inversion map, we obtain

Tgφ · u = −Tg(Rg−1 ◦ Lg−1) · u

for all u ∈ TgG. Also, since X is left invariant, we have

(ThLg)X(h) = X(gh)

Consequently, we get

(φ∗X)(g) = Tg−1φ ·X · φ−1(g)

= −Tg−1(Rg ◦ Lg) ·X(g−1)

chain rule
= −TeRg · Tg−1Lg · TeLg−1 ·X(e)

= −TeRg · Te(Lg−1 ◦ Lg) ·X(e)

= −TeRg ·X(e)

So (φ∗X)(e) = −TeRe(X(e)) = −X(e). Also,

(φ∗X)(gh) = −TeRgh ·X(e)

= −Te(Rh ◦Rg) ·X(e)

chain rule
= −TgRh · TeRg ·X(e)

= TgRh · (−TeRg(X(e)))

= TgRh · (φ∗X)(g)

Thus, by definition, φ∗(X) is the right invariant vector field. Since φ is
a diffeomorphism, φ is an isomorphism between the set of left and right
invariant vector fields on G.

Finally, we want to show that X 7→ φ∗(X) gives a Lie algebra isomor-
phism between the. Since φ is a diffeomorphism, from Proposition 4.2.23,
φ∗[X, Y ] = [φ∗X, φ∗Y ]. Thus, φ preserves the Jacobi-Lie bracket of left-
invariant vector fields, i.e., given left and right invariant vector fields:
Xξ, Xη and Yξ, Yη, by the calculation above,

φ∗[Xξ, Xη] = φ∗X[ξ,η] = [φ∗Xξ, φ∗Xη] = [Yξ, Yη] ∈ XR(G)

Problem 4 (MTA 5.2-1 (iii)-(v)) (Nok Wingpiromsarn 2007)

(iii) Using the identity,

ω̂1ω̂2 − ω̂2ω̂1 = ̂̂ω1ω2
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we get

[X1, X2](R) = (DX2 ·X1 −DX1 ·X2)(R)

= (ω̂2ω̂1 − ω̂1ω̂2)R

= −ω̂1 × ω2R

(PS 2009: Alternatively, in the notation of P.298 of the book, Xi(R) =
ω̂iR = Y

bωi(R), so

[X1, X2](R) = [Y
bω1 , Y

bω2 ]

= −Y[bω1,bω2] (cf top of P.299)

= −[ω̂1, ω̂2]R

= −(ω̂1ω̂2 − ω̂2ω̂1)R

= −(ω̂1 × ω2)R by a straightforward calculation.)

(iv) A ∈ SO(3) =⇒ AAT = AT A = Identity. If A is also symmetric, then
AA = e = Identity. So the set of matrices in SO(3) that are also sym-
metric is given by

{A | A2 = Identity, det A = +1}

From Corollary 5.2.8, A can be written as

A = B

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

BT

where B ∈ O(3). So we have

e = AA

= B

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

2

BT

= B

1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ

BT

BT eB = e =

1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ


Thus, we get that θ = nπ, n ∈ Z. So the set of matrices in SO(3) that
are also symmetric is given by

Identity ∪

B

1 0 0
0 −1 0
0 0 −1

BT

∣∣∣∣∣∣ B ∈ O(3)


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Note that these matrices correspond to a rotation through an angle
nπ, n ∈ Z about an axis w where w is an eigenvector of A with eigenvalue
1. These matrices have eigenvalues 1,1,1 or 1,-1,-1.

(v) Using the identity

(x̂ŷ)z = yxT z − xT yz = (yxT − xT ye)z

where e is the identity matrix, we get that

1

2
trace(ω̂1ω̂

T
2 ) = −1

2
trace(ω̂1ω̂2)

= −1

2
trace(ω2ω

T
1 − ωT

1 ω2e)

= −1

2

(
trace(ω2ω

T
1 )− trace(ωT

1 ω2e)
)

= −1

2

(
ωT

1 ω2 − 3ωT
1 ω2

)
= ωT

1 ω2

= ω1 · ω2

Problem 5 (MTA 5.2-5)

(i) First, since SO(n) and Rn are manifolds, it is clear that G is also a
manifold. To show that G is a group, just notice that

– If (A, v) and (B, w) are in G (which means that A, B ∈ SO(n)),
then AB is also in SO(n) because AB(AB)T = ABBT AT = I. In
addition, Aw + v is in Rn. Thus (A, v)(B, w) is in G.

– The associative property holds, i.e.,

(A, v)((B, w)(C, y)) = (A, v)(BC, By + w) = ABC, ABy + Aw + v)

= ((A, v)(B, w))(C, y).

– The identity element is (I, 0).

– The inverse of (A, v) is (AT ,−AT v), which is shown by (A, v)(AT ,−AT v) =
(AAT ,−AAT v + v) = (I, 0) and (AT ,−AT v)(A, v) = (AT A, AT v −
AT v) = (I, 0).

Thus, G is a group.

Finally, the group operation (which is just matrix - vector multiplications
and addition) is smooth on L(Rn, Rn)×Rn, and hence on the submanifold
G. So, we conclude that G is a Lie group.
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(ii) Let g = (A, w) ∈ G. Define a submersion f : G → Rn as follows:

f(g) = w.

Then f(g) = 0 defines a closed submanifold of G, which is exactly
SO(n) × {0}. Furthermore, (A, 0)(B, 0) = (AB, 0), the identity (I, 0),
and the inverse (AT , 0) of (A, 0) are all in SO(n)×{0}, and the associa-
tive property follows immediately. Hence SO(n)× {0} is a subgroup of
G.


